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Problem setting

Let consider
2 =Az+Bv+ f, 2(0)=2",

where
@ A is the generator of an analytic semigroup (etA)

Hilbert space H

@ (H) The spectrum of A consists of isolated eigenvalues ()
with finite algebraic multiplicity and there is no finite cluster
pointin {Ae€C : ReA> —0o}

@ B:U — D(A*) is a linear operator on a Hilbert space U

t>0 On a

@ f is a given source satisfying an exponential decay at infinity



Case without delay

@ M. Badra, T. Takahashi. 2014: a finite dimensional feedback
control is constructed:

A characterization of the exponential stabilization with rate o > 0
in the case without delay is the well-known Fattorini-Hautus
criterion

Ve € D(A¥), YA€ C, ReA> -0 A'e=MXcand B¢ =0
= e=0.
There exists G with finite rank such that
v(t) = G(2(t)), t=>0.
and v stabilizes the system

Y =Az+Bv+f, 2(0)=2"

@l < € (|2l + 1 Ollpacy ) » @ > 0.



Problem setting

2 =Az+Bv+f, 2(0)=2",

In some cases, due to a calculus time, we can not obtain the value
of the state z at the instant ¢ and thus we can not construct a
control v as a feedback of z at .

Objective: obtain a feedback control v(t) that depends on the
values of z(s) for s <t —tg, where ty > 0 is a positive constant
corresponding to a delay.



Previous results for equations with delay

Consider, for instance, the wave equation with boundary feedback
delay:

ugt (2, 1) — gy (x,t) =0 x e (0,L),t>0,
u(0,t) =0, t>0,
ug(L,t) = —auy(L,t)—Pu (L, t —h), t>0,
ut(La f) = ZO(t)7 te (_hv 0)7
u(x,0) = ugp(z), ug(z,0) = ui(x) x € (0,L).
Assumption
0<fB8<«

If it is not the case, it can be shown that instabilities may appear:
@ Datko 1988, Datko, Lagnese, Polis 1986 with o =0

@ Nicaise, Pignotti 2006 in the more general case for the wave
equation (see also Nicaise, V. 2010).



KdV equation with boundary delay

yt(l‘, t) + y:m:a:(xv t) + yﬂc(l'a t)
+y(z, t)y(z,t) =0, ze(0,L),t>0,
y(0,t) = y(L,t) =0, t>0,
Yo (L, t) = ayz(0,0)+B8y. (0.t — h), >0,
Y (0,t) = 20(t), t € (—h,0),
y(xao) = 1/0(17)» YIS (OaL)v
Assumption
lal + |8l < 1

Results [Baudouin, Crépeau, V. 2019]
@ Local exponential stability result for non critical lengths L

@ The decay rate depends on the delay




KdV equation with internal delay

Yt(2, 1) + Yraa (2, ) + Yo (2, 1) + a(@)y(z, 1)
+b(x)y(z,t — h)+ (,) (,t):(), x € (0,L),t>0,

y(0,1) = y(L,t) = y2(L,1) = t>0,
y(z,0) = yo(z), x € (0,L),
y(z,t) = zo(x, 1), x €w,te(—h,0),

Results [V. 2021]
o If

Jeg > 0, b(x) + o < a(z), a.e. inw =suppb

semi-global exponential stability result for all lengths L

o If suppb ¢ suppa, local exponential stability for all L < /37
and for |[b| o< g, 1) small enough




Selective bibliography

Several works on the topic
@ Krstic 2009 : a backstepping method
@ Manitius, Olbrot 1979, Bresch-Pietri, Krstic 2014 : a predictor
approach
@ Nihtila 1992, Bekiaris-Liberis, Krstic 2013 : case of non
constant delay
@ Bekiaris-Liberis, Krstic 2017 : multiple delay



Selective bibliography

Our approach inspired from

Bresch-Pietri, Prieur, Trélat 2018 : finite dimensional linear
systems

Prieur, Trélat 2019 : one-dimensional reaction-diffusion
equation with boundary control

Lhachemi, Shorten 2019 : structurally damped Euler-Bernoulli
beam

Lhachemi, Prieur 2020 : Riesz spectral operator with simple
eigenvalues

Lhachemi, Shorten, Prieur 2020 : control with disturbances
and delay depending on time
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Construction of time delayed control

Let us consider o > 0. We first decompose the spectrum of A into
the "unstable” modes and the "stable” modes:

Yipi= {)\j ; Re; > —U}, Y= {)\j ; Re); < —U}.
Since A is analytic with (H), then X is finite.




Decomposition of the system

Let consider the projection operator P, defined by

1
P+ =
2m Jp,

(A=At a
We can define
H := P H, H_:=(Id- P;)H.

H., is a finite dimensional space. We have H, ® H_ = H and if
we set

A+ = A|HI+ N H+ — H+, Af = A|H7 . D(A) me — H,,

then the spectrum of A, (resp. A_) is exactly ¥ (resp. ¥_).



Notation

We can proceed similarly for A*:

1
P = /()\ — A7t ax,
2m Jr
HY, := P{H, H* := (Id— P})H,
We also define
Uy :=B'H}, U_:=B" (D(A*) ﬂH*_) ,
])+CU—>U+, p_:U—-0U_, i+IU+—>U, i_:U_ -1,

the orthogonal projections and the inclusion maps. We can define

By =P, Biy € L(Uy,Hy),

B_:=(Id— P;)Bi_ € L(U_, [D(A*) nH"]").

We can prove that

P.B=B.p., (Id—Py)B=B_p_.



Decomposition of the system

We set
zy =Pz, z_.=({I—-Py)z

z satisfies the system
Y =Az+Bv+f, 2(0) =2,
if and only if

2y =Ayzp + Bippv+ Prf,  2.(0) = P20,
2 =A_z +B.pv+({I—-Py)f, 2-(0)=I—P;)2"



Artstein transform

o =Aizi +Bipv+ Pif, 2(0) = P2’
The Artstein Transform (Artstein 1982):

t+to
w(t) == z4(t) +/ =) B p u(s) ds.
t
w satisfies the system

{ w =Aw+e "N Biput Pyf,
w(0) = z4(0),

such that u(t) = v(t 4 to) for t > 0.
(A, ,e "4+ B, ) satisfies the Fattorini-Hautus test?

Ale=Nje, Bilete=0= e NB%=0.

If (A, B) satisfies the Fattorini's criterion, we get ¢ = 0.



Stabilization of the closed loop system

Lemma
Let o > 0. There exists G of finite rank, such that the solution of

w = Aw4 e 0B .Gu + Py f,
w(0) = w’ € Hy,

satisfies

lw®lls, < e ([[ulfly, + 1Pl ), t=0.

Thus,
U(t) = l[to,—i-oo)G(w(t - t())).



To express the control v in terms of 2,

There exists a kernel K € L (R4, £(H)) such that

loc

t—to

v(t) = 1y 400) ()G {er(t —to) + ; K(t —ty,s)z4(s) ds

Idea of the proof: Inverse of the Artstein transform:
t
w(t) := 24 (t) +/ K(t,s)z4(s)ds
0

Lemma
Let Do :={(t,8) € R? : t € (0,00), s € (0,¢)}. There exists
K € L2 (Doo; L(HL)) such that

loc
K(t,s) = e 7% B p\ Glimax(t—t0,05.0) ()

t
+/ TN B p GK (¢, 5) dE (t>0,s € (0,1)).

max{t—to,s}

i i——




Proof of the lemma
We set

Ko(t) =% B p G, Ko € L0, t0; L(H,)),

so the equation writes
t

K(tv S) = KO(t_S)1(max{t—to,0},t)(8)+/ Ko(t—f)K(f, S) dg.

max{t—to,s}

Let T > 0, and let us define
Dy ={(t,s) eR*| tec(0,T), sc(0,t)},

and
® : L®(Dry; L(H)) — L= (Dr; L(HL)),

(@K)(t,5) = / Kot — )K(€.5) dé,  ((t,s) € Dr).

max{t—to,s}
The mapping @ is well-defined, and is a linear and bounded
operator of L (Dp; L(H. )). Moreover,

[(@E)(t, 8)l| iy < 1Kol oo o o520, ) 1K M oo (Daseqrny ) -



Proof of the lemma

/ Ko(t — DK (&, s) dg

max{t—to,s}

@Rt ., = \

L(H-)
t
< WEoll e e | I®K ()]l
max{t—to,s}
t
2
1Kol oo (0,40;(1. ) 1K || oo (Do, ) / £dg

max{t—to,s}

IN

t2 9
o 1ol e 0 t0;1)) 1K 2o (s ety »

IN

and by induction

tTL

L™K (2, $)ll ey < 7 M0l Toe 0,005 ) 1 N Lo (s -



End of the proof of the lemma

In particular, for n large enough, ®” is a strict contraction and
consequently if we define @ by

((I)K)(t, 8) = (‘I)K)(t, S) + Ko(t - 5)1(max{t—t0,0},t)(5)
then ®" is also a strict contraction. This implies that ® admits a
unique fixed point.
Remark

As rank(G) < N4, we can write

N+

G(¢)=> (6. C)gvk, (¢ €Hy),

k=1

where v, € Uy, ¢ € HY.




End of the proof of the main result
| remains:
@ to prove that this feedback stabilizes the whole system: it does not
destabilize the infinite dimensional system that verifies z_
2 =A 2 4+ B_p_v+(I—Py)f, 2-(0)=(I— P;)2°

There exists o_ > o such that

H A_t 1 5
e

<C—e
L(H_) tY

< Ce -, H()\o _ A)Ter-t
L(H_)

For ¢ 2 to,

t
z (t) = e~ (Id—P) 2"+ / (Mo—A)Te = (\g—A) Y B_p_Gu(s—to) ds

to

+ /Ot e~ (1d — P) f(s) ds.

= |lz—(t)lla < Ce 7" ||2°]

t

—c 1 —(o_—0o)(t—s

+ Ce t/ (t — 3)76 ( )(¢=s) ds (HP"FZOHHJr + HP‘l’fHLg(O,oo;H+))
to

t
— O 1 —\Oo — 0 — S8 oS8
+ Ce / o T @, ds

t— 8)7/ 5/



Main result

Using that o > o, v < 1 and 7/ < 1/2, we deduce that

2Ol < e (12N + I/l 30,000 -

Theorem

Assume that (A, B) satisfies the Fattorini criterion. There exists a
kernel K € L2 (Ry?, L(H,)), ¢ € D(A*), vy € B* (D(AY)),

k=1,..., Ny, such that

Ny

o) = Ly 1oy () S <z<t )+

k=1

t—to

(e 10,5):(6) d.1) o
0 H
stabilizes the whole system

Y =Az4+ Bv+ f, 2(0) =2,




Reminder of the ideas of the proof

(Fattorini—Hautus criterion for (A, B)j
(A*fe=Aefor A€ ¥ and B'e=0) = €e=0

{

LExponentiaI stabilization for the system that satisfies wj

y

[Exponential stabilization for the system that satisfies Z+]

|

[Exponential stabilization for the whole system that satisfies ZJ




© Introduction

9 Main result

e APP| iCations

<o <@r 4

Q>



Heat equation

Let 2 C RY (N > 1) be a bounded domain of class C*! and let
O c.

Oz — Az =vlp in (0,00) X §,
z2=0 on (0,00) x 99,
2(0,-) =2% inQ,
H=L*Q), U=L*0),
Az= Az, D(A)=H*Q)NH}(Q), A=A"
Bv =vlp.
If € satisfies A*e = Ae and B*e = 0, then
Ae—Ae=0 inQ,
e=0 on 09,
e=0 inO.

From standard results on the unique continuation of the Laplace
operator, we deduce that ¢ = 0.



Reaction-convection-diffusion equations

Let © C RY (N > 1) be a bounded domain of class C%! and T a
non-empty open subset of 0€).
Oz—Az—b-Vz—cz=0 in (0,00) x Q,
z=wv on (0,00) x T,
z=0 on (0,00) x (OQ\T),
2(0,) =2% inQ,
H=L%Q), U=L*T),
Az=Az+b-Vz+cz, D(A) = H*(Q)NHQ)
D(A*) = H*(Q) NHY(Q), A'c=Ac—b-Ve+ (c— divb)e,
0=
ovr
If € satisfies A*e = \e and B*s = 0, then
A —Ae+b-Ve—(c—divb)e =0 in Q,

B*e =

e=0 on 99,
%:0 onT.

From standard results on the unique continuation of the Laplace
operator, we deduce that € = 0.



Oseen system

Let © C R? be a bounded domain of class C?'! and let O C Q.
0z + (WS - V)z+ (z- V)w® —vAz + Vg =1pv in (0,00) x Q,
V-z=0 in (0,00) x £,
z=0 on (0,00) x 99,
2(0,-) =2 inQ,
H={:c[L*Q)® : V-2=0inQ, z-n=00n 09}, U=][L*O)].
We denote by P the orthogonal projection P : [L?(9)]? — H.
D(A) = [H*(Q)NH(QPPNH, Az =P (vAz — (w°-V)z — (- V)u®)
Bv=P(lov), B'e=¢p
If € satisfies A*e = Ae and B*s = 0, then

e —vAe — (0¥ - V)e + (Vw®)'e +Vr =0 inQ,

V-e=0 in(,
e=0 on 99,
e=0 inO.

By [Fabre Lebeau 1996], we deduce that ¢ = 0.



Navier-Stokes system

We consider the stabilization of the Navier-Stokes system with
internal control:

Kz 4+ (Z-V)Z—vAZ+Vi=1lov+ 7 in (0,00) x 0,

V-Z=0 in(0,00) x Q,
n (0,00) x 052,
in ,

R

z
around the stationary state

(w® - V)w® — vAw® +VrS = f5 in Q,
V-w®=0 inQ,
w® =b% on 99.

We obtain the local stabilization result for the Navier-Stokes
system with internal control with delay.



Conclusion

Conclusion
@ Large class of parabolic systems with input delay

@ The Fattorini-Hautus criterion yields the existence of such a
feedback control, as in the case of stabilization without delay

@ Application to several systems

Open problems
@ Time dependent delay
@ Presence of disturbances



Happy birthday Marius !
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