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Problem setting

Let consider
z′ = Az +Bv + f, z(0) = z0,

where

A is the generator of an analytic semigroup (etA)t≥0 on a
Hilbert space H
(H) The spectrum of A consists of isolated eigenvalues (λj)
with finite algebraic multiplicity and there is no finite cluster
point in {λ ∈ C : Reλ ≥ −σ}
B : U→ D(A∗)′ is a linear operator on a Hilbert space U
f is a given source satisfying an exponential decay at infinity



Case without delay

M. Badra, T. Takahashi. 2014: a finite dimensional feedback
control is constructed:

A characterization of the exponential stabilization with rate σ > 0
in the case without delay is the well-known Fattorini-Hautus
criterion

∀ε ∈ D(A∗), ∀λ ∈ C, Reλ ≥ −σ A∗ε = λε and B∗ε = 0

=⇒ ε = 0.

There exists G with finite rank such that

v(t) = G(z(t)), t ≥ 0.

and v stabilizes the system

z′ = Az +Bv + f, z(0) = z0,

i.e.
‖z(t)‖H ≤ e

−σt
(∥∥z0

∥∥
H + ‖f(t)‖D(A∗)′

)
, σ > 0.



Problem setting

z′ = Az +Bv + f, z(0) = z0,

In some cases, due to a calculus time, we can not obtain the value
of the state z at the instant t and thus we can not construct a
control v as a feedback of z at t.

Objective: obtain a feedback control v(t) that depends on the
values of z(s) for s ≤ t− t0, where t0 > 0 is a positive constant
corresponding to a delay.



Previous results for equations with delay

Consider, for instance, the wave equation with boundary feedback
delay:

utt(x, t)− uxx(x, t) = 0 x ∈ (0, L), t > 0,
u(0, t) = 0, t > 0,
ux(L, t) = −αut(L, t)−βut(L, t− h), t > 0,
ut(L, t) = z0(t), t ∈ (−h, 0),
u(x, 0) = u0(x), ut(x, 0) = u1(x) x ∈ (0, L).

Assumption

0 ≤ β < α

If it is not the case, it can be shown that instabilities may appear:

Datko 1988, Datko, Lagnese, Polis 1986 with α = 0

Nicaise, Pignotti 2006 in the more general case for the wave
equation (see also Nicaise, V. 2010).



KdV equation with boundary delay



yt(x, t) + yxxx(x, t) + yx(x, t)
+y(x, t)yx(x, t) = 0, x ∈ (0, L), t > 0,

y(0, t) = y(L, t) = 0, t > 0,
yx(L, t) = αyx(0, t)+βyx(0, t− h), t > 0,
yx(0, t) = z0(t), t ∈ (−h, 0),
y(x, 0) = y0(x), x ∈ (0, L),

Assumption

|α|+ |β| < 1

Results [Baudouin, Crépeau, V. 2019]

Local exponential stability result for non critical lengths L

The decay rate depends on the delay



KdV equation with internal delay


yt(x, t) + yxxx(x, t) + yx(x, t) + a(x)y(x, t)

+b(x)y(x, t− h)+y(x, t)yx(x, t) = 0, x ∈ (0, L), t > 0,
y(0, t) = y(L, t) = yx(L, t) = 0, t > 0,
y(x, 0) = y0(x), x ∈ (0, L),
y(x, t) = z0(x, t), x ∈ ω, t ∈ (−h, 0),

Results [V. 2021]

If

∃c0 > 0, b(x) + c0 ≤ a(x), a.e. in ω = supp b

semi-global exponential stability result for all lengths L

If supp b 6⊂ supp a, local exponential stability for all L <
√

3π
and for ‖b‖L∞(0,L) small enough
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Construction of time delayed control
Let us consider σ > 0. We first decompose the spectrum of A into
the ”unstable” modes and the ”stable” modes:

Σ+ := {λj ; Reλj ≥ −σ}, Σ− := {λj ; Reλj < −σ}.

Since A is analytic with (H), then Σ+ is finite.

Σ+Σ−

−σ



Decomposition of the system

Let consider the projection operator P+ defined by

P+ :=
1

2πı

∫
Γ+

(λ−A)−1 dλ.

We can define

H+ := P+H, H− := (Id− P+)H.

H+ is a finite dimensional space. We have H+ ⊕H− = H and if
we set

A+ := A|H+
: H+ → H+, A− := A|H− : D(A) ∩H− → H−,

then the spectrum of A+ (resp. A−) is exactly Σ+ (resp. Σ−).



Notation
We can proceed similarly for A∗:

P ∗+ :=
1

2πı

∫
Γ+

(λ−A∗)−1 dλ,

H∗+ := P ∗+H, H∗− := (Id− P ∗+)H,
A∗+ := A|H∗+ : H∗+ → H∗+, A∗− := A|H∗− : D(A∗) ∩H∗− → H∗−.

We also define

U+ := B∗H∗+, U− := B∗
(
D(A∗) ∩H∗−

)
,

p+ : U→ U+, p− : U→ U−, i+ : U+ → U, i− : U− → U,
the orthogonal projections and the inclusion maps. We can define

B+ := P+Bi+ ∈ L(U+,H+),

B− := (Id− P+)Bi− ∈ L(U−,
[
D(A∗) ∩H∗−

]′
).

We can prove that

P+B = B+p+, (Id− P+)B = B−p−.



Decomposition of the system

We set
z+ = P+z, z− = (I − P+)z

z satisfies the system

z′ = Az +Bv + f, z(0) = z0,

if and only if{
z′+ = A+z+ +B+p+v + P+f, z+(0) = P+z

0,
z′− = A−z− +B−p−v + (I − P+)f, z−(0) = (I − P+)z0.



Artstein transform

z′+ = A+z+ +B+p+v + P+f, z+(0) = P+z
0

The Artstein Transform (Artstein 1982):

w(t) := z+(t) +

∫ t+t0

t
e(t−s)A+B+p+v(s) ds.

w satisfies the system{
w′ = A+w + e−t0A+B+p+u+ P+f,

w(0) = z+(0),

such that u(t) = v(t+ t0) for t ≥ 0.
(A+, e

−t0A+B+) satisfies the Fattorini-Hautus test?

A∗+ε = λjε, B∗+e
−t0A∗+ε = 0 =⇒ e−t0λjB∗ε = 0.

If (A,B) satisfies the Fattorini’s criterion, we get ε = 0.



Stabilization of the closed loop system

Lemma

Let σ > 0. There exists G of finite rank, such that the solution of{
w′ = A+w + e−t0A+B+Gw + P+f,

w(0) = w0 ∈ H+,

satisfies

‖w(t)‖H+
≤ Ce−σt

(∥∥w0
∥∥
H+

+ ‖P+f‖H+

)
, t ≥ 0.

Thus,
v(t) = 1[t0,+∞)G(w(t− t0)).



To express the control v in terms of z+

There exists a kernel K ∈ L∞loc(R+
2,L(H+)) such that

v(t) = 1[t0,+∞)(t)G

[
z+(t− t0) +

∫ t−t0

0
K(t− t0, s)z+(s) ds

]
Idea of the proof: Inverse of the Artstein transform:

w(t) := z+(t) +

∫ t

0
K(t, s)z+(s)ds

Lemma

Let D∞ := {(t, s) ∈ R2 : t ∈ (0,∞), s ∈ (0, t)}. There exists
K ∈ L∞loc(D∞;L(H+)) such that

K(t, s) = e(t−s−t0)A+B+p+G1(max{t−t0,0},t)(s)

+

∫ t

max{t−t0,s}
e(t−ξ−t0)A+B+p+GK(ξ, s) dξ (t > 0, s ∈ (0, t)).



Proof of the lemma
We set

K0(t) := e(t−t0)A+B+p+G, K0 ∈ L∞(0, t0;L(H+)),

so the equation writes

K(t, s) = K0(t−s)1(max{t−t0,0},t)(s)+

∫ t

max{t−t0,s}
K0(t−ξ)K(ξ, s) dξ.

Let T > 0, and let us define

DT = {(t, s) ∈ R2 | t ∈ (0, T ), s ∈ (0, t)},

and
Φ : L∞(DT ;L(H+))→ L∞(DT ;L(H+)),

(ΦK)(t, s) =

∫ t

max{t−t0,s}
K0(t− ξ)K(ξ, s) dξ, ((t, s) ∈ DT ).

The mapping Φ is well-defined, and is a linear and bounded
operator of L∞(DT ;L(H+)). Moreover,

‖(ΦK)(t, s)‖L(H+) ≤ t ‖K0‖L∞(0,t0;L(H+)) ‖K‖L∞(DT ;L(H+)) .



Proof of the lemma

∥∥(Φ2K)(t, s)
∥∥
L(H+)

=

∥∥∥∥∥
∫ t

max{t−t0,s}
K0(t− ξ)ΦK(ξ, s) dξ

∥∥∥∥∥
L(H+)

≤ ‖K0‖L∞(0,t0;L(H+))

∫ t

max{t−t0,s}
‖ΦK(ξ, s)‖L(H+)

≤ ‖K0‖2L∞(0,t0;L(H+)) ‖K‖L∞(DT ;L(H+))

∫ t

max{t−t0,s}
ξdξ

≤ t2

2
‖K0‖2L∞(0,t0;L(H+)) ‖K‖L∞(DT ;L(H+)) ,

and by induction

‖(ΦnK)(t, s)‖L(H+) ≤
tn

n!
‖K0‖nL∞(0,t0;L(H+)) ‖K‖L∞(DT ;L(H+)) .



End of the proof of the lemma

In particular, for n large enough, Φn is a strict contraction and
consequently if we define Φ̃ by

(Φ̃K)(t, s) := (ΦK)(t, s) +K0(t− s)1(max{t−t0,0},t)(s)

then Φ̃n is also a strict contraction. This implies that Φ̃ admits a
unique fixed point.

Remark

As rank(G) ≤ N+, we can write

G(φ) =

N+∑
k=1

(φ, ζk)H vk, (φ ∈ H+),

where vk ∈ U+, ζk ∈ H∗+.



End of the proof of the main result
I remains:

to prove that this feedback stabilizes the whole system: it does not
destabilize the infinite dimensional system that verifies z−

z′− = A−z− +B−p−v + (I − P+)f, z−(0) = (I − P+)z
0.

There exists σ− > σ such that∥∥∥eA−t∥∥∥
L(H−)

≤ Ce−σ−t,
∥∥∥(λ0 −A)γeA−t

∥∥∥
L(H−)

≤ C 1

tγ
e−σ−t.

For t ≥ t0,

z−(t) = eA−t(Id−P+)z
0+

∫ t

t0

(λ0−A)γeA−(t−s)(λ0−A)−γB−p−Gw(s−t0) ds

+

∫ t

0

eA−(t−s)(Id− P+)f(s) ds.

=⇒ ‖z−(t)‖H ≤ Ce−σ−t
∥∥z0∥∥H

+ Ce−σt
∫ t

t0

1

(t− s)γ e
−(σ−−σ)(t−s) ds

(
‖P+z

0‖H+ + ‖P+f‖L2
σ(0,∞;H+)

)
+ Ce−σt

∫ t

0

1

(t− s)γ′
e−(σ−−σ)(t−s) ‖eσsf(s)‖H−γ′

ds



Main result

Using that σ− > σ, γ < 1 and γ′ < 1/2, we deduce that

‖z−(t)‖H− ≤ Ce−σt
(
‖z0‖H + ‖f‖L2

σ(0,∞;H−γ′ )

)
.

Theorem

Assume that (A,B) satisfies the Fattorini criterion. There exists a
kernel K ∈ L∞loc(R+

2,L(H+)), ζk ∈ D(A∗), vk ∈ B∗ (D(A∗)),
k = 1, . . . , N+, such that

v(t) = 1[t0,+∞)(t)

N+∑
k=1

(
z(t− t0) +

∫ t−t0

0
K(t− t0, s)z(s) ds, ζk

)
H
vk,

stabilizes the whole system

z′ = Az +Bv + f, z(0) = z0,



Reminder of the ideas of the proof

�� ��Fattorini-Hautus criterion for (A,B)(
A∗ε = λε for λ ∈ Σ+ and B∗ε = 0

)
=⇒ ε = 0w��� ��Exponential stabilization for the system that satisfies ww��� ��Exponential stabilization for the system that satisfies z+w��� ��Exponential stabilization for the whole system that satisfies z
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Heat equation

Let Ω ⊂ RN (N ≥ 1) be a bounded domain of class C2,1 and let
O ⊂ Ω. 

∂tz −∆z = v1O in (0,∞)× Ω,
z = 0 on (0,∞)× ∂Ω,

z(0, ·) = z0 in Ω,

H = L2(Ω), U = L2(O),

Az = ∆z, D(A) = H2(Ω) ∩H1
0 (Ω), A = A∗.

Bv = v1O.

If ε satisfies A∗ε = λε and B∗ε = 0, then
λε−∆ε = 0 in Ω,

ε = 0 on ∂Ω,
ε = 0 in O.

From standard results on the unique continuation of the Laplace
operator, we deduce that ε = 0.



Reaction-convection-diffusion equations

Let Ω ⊂ RN (N ≥ 1) be a bounded domain of class C2,1 and Γ a
non-empty open subset of ∂Ω.

∂tz −∆z − b · ∇z − cz = 0 in (0,∞)× Ω,
z = v on (0,∞)× Γ,
z = 0 on (0,∞)× (∂Ω \ Γ),

z(0, ·) = z0 in Ω,

H = L2(Ω), U = L2(Γ),

Az = ∆z + b · ∇z + cz, D(A) = H2(Ω) ∩H1
0 (Ω)

D(A∗) = H2(Ω) ∩H1
0 (Ω), A∗ε = ∆ε− b · ∇ε+ (c− divb)ε,

B∗ε = − ∂ε
∂ν |Γ

.

If ε satisfies A∗ε = λε and B∗ε = 0, then λε−∆ε+ b · ∇ε− (c− divb)ε = 0 in Ω,
ε = 0 on ∂Ω,

∂ε
∂ν = 0 on Γ.

From standard results on the unique continuation of the Laplace
operator, we deduce that ε = 0.



Oseen system

Let Ω ⊂ R3 be a bounded domain of class C2,1 and let O ⊂ Ω.
∂tz + (wS · ∇)z + (z · ∇)wS − ν∆z +∇q = 1Ov in (0,∞)× Ω,

∇ · z = 0 in (0,∞)× Ω,
z = 0 on (0,∞)× ∂Ω,

z(0, ·) = z0 in Ω,

H = {z ∈ [L2(Ω)]3 : ∇ · z = 0 in Ω, z · n = 0 on ∂Ω}, U = [L2(O)]3.

We denote by P the orthogonal projection P : [L2(Ω)]3 → H.

D(A) = [H2(Ω)∩H1
0 (Ω)]3∩H, Az = P

(
ν∆z − (wS · ∇)z − (z · ∇)wS

)
Bv = P (1Ov) , B∗ε = ε|O

If ε satisfies A∗ε = λε and B∗ε = 0, then
λε− ν∆ε− (wS · ∇)ε+ (∇wS)∗ε+∇π = 0 in Ω,

∇ · ε = 0 in Ω,
ε = 0 on ∂Ω,
ε ≡ 0 in O.

By [Fabre Lebeau 1996], we deduce that ε = 0.



Navier-Stokes system

We consider the stabilization of the Navier-Stokes system with
internal control:

∂tz̃ + (z̃ · ∇)z̃ − ν∆z̃ +∇q̃ = 1Ov + fS in (0,∞)× Ω,
∇ · z̃ = 0 in (0,∞)× Ω,
z̃ = bS on (0,∞)× ∂Ω,

z̃(0, ·) = z̃0 in Ω,

around the stationary state
(wS · ∇)wS − ν∆wS +∇rS = fS in Ω,

∇ · wS = 0 in Ω,
wS = bS on ∂Ω.

We obtain the local stabilization result for the Navier-Stokes
system with internal control with delay.



Conclusion

Conclusion

Large class of parabolic systems with input delay

The Fattorini-Hautus criterion yields the existence of such a
feedback control, as in the case of stabilization without delay

Application to several systems

Open problems

Time dependent delay

Presence of disturbances



Happy birthday Marius !


	Outline
	Introduction
	Main result
	Applications

