Feedback Stabilization of Parabolic Systems with Input Delay

Takéo Takahashi, Imene Djebour and Julie Valein

Control and analysis of PDE systems
November 30, 2021

Outline

(1) Introduction
(2) Main result
(3) Applications

Outline

(1) Introduction
(2) Main result
(3) Applications

Problem setting

Let consider

$$
z^{\prime}=A z+B v+f, \quad z(0)=z^{0}
$$

where

- A is the generator of an analytic semigroup $\left(e^{t A}\right)_{t \geq 0}$ on a Hilbert space \mathbb{H}
- (H) The spectrum of A consists of isolated eigenvalues $\left(\lambda_{j}\right)$ with finite algebraic multiplicity and there is no finite cluster point in $\{\lambda \in \mathbb{C}: \operatorname{Re} \lambda \geq-\sigma\}$
- $B: \mathbb{U} \rightarrow \mathcal{D}\left(A^{*}\right)^{\prime}$ is a linear operator on a Hilbert space \mathbb{U}
- f is a given source satisfying an exponential decay at infinity

Case without delay

- M. Badra, T. Takahashi. 2014: a finite dimensional feedback control is constructed:
A characterization of the exponential stabilization with rate $\sigma>0$ in the case without delay is the well-known Fattorini-Hautus criterion

$$
\begin{aligned}
& \forall \varepsilon \in \mathcal{D}\left(A^{*}\right), \forall \lambda \in \mathbb{C}, \operatorname{Re} \lambda \geq-\sigma \quad A^{*} \varepsilon=\lambda \varepsilon \text { and } B^{*} \varepsilon=0 \\
& \Longrightarrow \quad \varepsilon=0 .
\end{aligned}
$$

There exists G with finite rank such that

$$
v(t)=G(z(t)), \quad t \geq 0
$$

and v stabilizes the system

$$
z^{\prime}=A z+B v+f, \quad z(0)=z^{0}
$$

i.e.

$$
\|z(t)\|_{\mathbb{H}} \leq e^{-\sigma t}\left(\left\|z^{0}\right\|_{\mathbb{H}}+\|f(t)\|_{\mathcal{D}\left(A^{*}\right)^{\prime}}\right), \sigma>0
$$

Problem setting

$$
z^{\prime}=A z+B v+f, \quad z(0)=z^{0}
$$

In some cases, due to a calculus time, we can not obtain the value of the state z at the instant t and thus we can not construct a control v as a feedback of z at t.

Objective: obtain a feedback control $v(t)$ that depends on the values of $z(s)$ for $s \leq t-t_{0}$, where $t_{0}>0$ is a positive constant corresponding to a delay.

Previous results for equations with delay

Consider, for instance, the wave equation with boundary feedback delay:

$$
\begin{cases}u_{t t}(x, t)-u_{x x}(x, t)=0 & x \in(0, L), t>0, \\ u(0, t)=0, & t>0, \\ u_{x}(L, t)=-\alpha u_{t}(L, t)-\beta u_{t}(L, t-h), & t>0, \\ u_{t}(L, t)=z_{0}(t), & t \in(-h, 0), \\ u(x, 0)=u_{0}(x), u_{t}(x, 0)=u_{1}(x) & x \in(0, L) .\end{cases}
$$

Assumption

$$
0 \leq \beta<\alpha
$$

If it is not the case, it can be shown that instabilities may appear:

- Datko 1988, Datko, Lagnese, Polis 1986 with $\alpha=0$
- Nicaise, Pignotti 2006 in the more general case for the wave equation (see also Nicaise, V. 2010).

KdV equation with boundary delay

$$
\begin{cases}y_{t}(x, t)+y_{x x x}(x, t)+y_{x}(x, t) & \\ \quad+y(x, t) y_{x}(x, t)=0, & x \in(0, L), t>0 \\ y(0, t)=y(L, t)=0, & t>0, \\ y_{x}(L, t)=\alpha y_{x}(0, t)+\beta y_{x}(0, t-h), & t>0, \\ y_{x}(0, t)=z_{0}(t), & t \in(-h, 0), \\ y(x, 0)=y_{0}(x), & x \in(0, L),\end{cases}
$$

Assumption

$$
|\alpha|+|\beta|<1
$$

Results [Baudouin, Crépeau, V. 2019]

- Local exponential stability result for non critical lengths L
- The decay rate depends on the delay

KdV equation with internal delay

$$
\begin{cases}y_{t}(x, t)+y_{x x x}(x, t)+y_{x}(x, t)+a(x) y(x, t) & \\ \quad+b(x) y(x, t-h)+y(x, t) y_{x}(x, t)=0, & x \in(0, L), t>0 \\ y(0, t)=y(L, t)=y_{x}(L, t)=0, & t>0, \\ y(x, 0)=y_{0}(x), & x \in(0, L) \\ y(x, t)=z_{0}(x, t), & x \in \omega, t \in(-h, 0)\end{cases}
$$

Results [V. 2021]

- If

$$
\exists c_{0}>0, \quad b(x)+c_{0} \leq a(x), \quad \text { a.e. in } \omega=\operatorname{supp} b
$$

semi-global exponential stability result for all lengths L

- If $\operatorname{supp} b \not \subset \operatorname{supp} a$, local exponential stability for all $L<\sqrt{3} \pi$ and for $\|b\|_{L^{\infty}(0, L)}$ small enough

Selective bibliography

Several works on the topic

- Krstic 2009 : a backstepping method
- Manitius, Olbrot 1979, Bresch-Pietri, Krstic 2014 : a predictor approach
- Nihtila 1992, Bekiaris-Liberis, Krstic 2013 : case of non constant delay
- Bekiaris-Liberis, Krstic 2017 : multiple delay

Selective bibliography

Our approach inspired from

- Bresch-Pietri, Prieur, Trélat 2018: finite dimensional linear systems
- Prieur, Trélat 2019 : one-dimensional reaction-diffusion equation with boundary control
- Lhachemi, Shorten 2019 : structurally damped Euler-Bernoulli beam
- Lhachemi, Prieur 2020 : Riesz spectral operator with simple eigenvalues
- Lhachemi, Shorten, Prieur 2020 : control with disturbances and delay depending on time

Outline

(1) Introduction
(2) Main result
(3) Applications

Construction of time delayed control

Let us consider $\sigma>0$. We first decompose the spectrum of A into the "unstable" modes and the "stable" modes:

$$
\Sigma_{+}:=\left\{\lambda_{j} ; \operatorname{Re} \lambda_{j} \geq-\sigma\right\}, \quad \Sigma_{-}:=\left\{\lambda_{j} ; \operatorname{Re} \lambda_{j}<-\sigma\right\} .
$$

Since A is analytic with (H), then Σ_{+}is finite.

Decomposition of the system

Let consider the projection operator P_{+}defined by

$$
P_{+}:=\frac{1}{2 \pi \imath} \int_{\Gamma_{+}}(\lambda-A)^{-1} d \lambda
$$

We can define

$$
\mathbb{H}_{+}:=P_{+} \mathbb{H}, \quad \mathbb{H}_{-}:=\left(I d-P_{+}\right) \mathbb{H}
$$

\mathbb{H}_{+}is a finite dimensional space. We have $\mathbb{H}_{+} \oplus \mathbb{H}_{-}=\mathbb{H}$ and if we set

$$
A_{+}:=A_{\mid \mathbb{H}_{+}}: \mathbb{H}_{+} \rightarrow \mathbb{H}_{+}, \quad A_{-}:=A_{\mid \mathbb{H}_{-}}: \mathcal{D}(A) \cap \mathbb{H}_{-} \rightarrow \mathbb{H}_{-},
$$

then the spectrum of $A_{+}\left(\right.$resp. $\left.A_{-}\right)$is exactly $\Sigma_{+}\left(\right.$resp. $\left.\Sigma_{-}\right)$.

Notation

We can proceed similarly for A^{*} :

$$
\begin{gathered}
P_{+}^{*}:=\frac{1}{2 \pi \imath} \int_{\overline{\Gamma_{+}}}\left(\lambda-A^{*}\right)^{-1} d \lambda, \\
\mathbb{H}_{+}^{*}:=P_{+}^{*} \mathbb{H}, \quad \mathbb{H}_{-}^{*}:=\left(I d-P_{+}^{*}\right) \mathbb{H}, \\
A_{+}^{*}:=A_{\mid \mathbb{H}_{+}^{*}}: \mathbb{H}_{+}^{*} \rightarrow \mathbb{H}_{+}^{*}, \quad A_{-}^{*}:=A_{\mid \mathbb{H}_{-}^{*}}: \mathcal{D}\left(A^{*}\right) \cap \mathbb{H}_{-}^{*} \rightarrow \mathbb{H}_{-}^{*} .
\end{gathered}
$$

We also define

$$
\begin{gathered}
\mathbb{U}_{+}:=B^{*} \mathbb{H}_{+}^{*}, \quad \mathbb{U}_{-}:=B^{*}\left(\mathcal{D}\left(A^{*}\right) \cap \mathbb{H}_{-}^{*}\right) \\
p_{+}: \mathbb{U} \rightarrow \mathbb{U}_{+}, \quad p_{-}: \mathbb{U} \rightarrow \mathbb{U}_{-}, \quad i_{+}: \mathbb{U}_{+} \rightarrow \mathbb{U}, \quad i_{-}: \mathbb{U}_{-} \rightarrow \mathbb{U}
\end{gathered}
$$

the orthogonal projections and the inclusion maps. We can define

$$
\begin{gathered}
B_{+}:=P_{+} B i_{+} \in \mathcal{L}\left(\mathbb{U}_{+}, \mathbb{H}_{+}\right) \\
B_{-}:=\left(I d-P_{+}\right) B i_{-} \in \mathcal{L}\left(\mathbb{U}_{-},\left[\mathcal{D}\left(A^{*}\right) \cap \mathbb{H}_{-}^{*}\right]^{\prime}\right)
\end{gathered}
$$

We can prove that

$$
P_{+} B=B_{+} p_{+}, \quad\left(I d-P_{+}\right) B=B_{-} p_{-} .
$$

Decomposition of the system

We set

$$
z_{+}=P_{+} z, \quad z_{-}=\left(I-P_{+}\right) z
$$

z satisfies the system

$$
z^{\prime}=A z+B v+f, \quad z(0)=z^{0}
$$

if and only if

$$
\left\{\begin{aligned}
z_{+}^{\prime}=A_{+} z_{+}+B_{+} p_{+} v+P_{+} f, & z_{+}(0)=P_{+} z^{0} \\
z_{-}^{\prime}=A_{-} z_{-}+B_{-} p_{-} v+\left(I-P_{+}\right) f, & z_{-}(0)=\left(I-P_{+}\right) z^{0}
\end{aligned}\right.
$$

Artstein transform

$$
z_{+}^{\prime}=A_{+} z_{+}+B_{+} p_{+} v+P_{+} f, \quad z_{+}(0)=P_{+} z^{0}
$$

The Artstein Transform (Artstein 1982):

$$
w(t):=z_{+}(t)+\int_{t}^{t+t_{0}} e^{(t-s) A_{+}} B_{+} p_{+} v(s) d s
$$

w satisfies the system

$$
\left\{\begin{array}{c}
w^{\prime}=A_{+} w+e^{-t_{0} A_{+}} B_{+} p_{+} u+P_{+} f \\
w(0)=z_{+}(0)
\end{array}\right.
$$

such that $u(t)=v\left(t+t_{0}\right)$ for $t \geq 0$.
$\left(A_{+}, e^{-t_{0} A_{+}} B_{+}\right)$satisfies the Fattorini-Hautus test?

$$
A_{+}^{*} \varepsilon=\overline{\lambda_{j}} \varepsilon, \quad B_{+}^{*} e^{-t_{0} A_{+}^{*}} \varepsilon=0 \Longrightarrow e^{-t_{0} \overline{\lambda_{j}}} B^{*} \varepsilon=0
$$

If (A, B) satisfies the Fattorini's criterion, we get $\varepsilon=0$.

Stabilization of the closed loop system

Lemma
Let $\sigma>0$. There exists G of finite rank, such that the solution of

$$
\left\{\begin{array}{c}
w^{\prime}=A_{+} w+e^{-t_{0} A_{+}} B_{+} G w+P_{+} f \\
w(0)=w^{0} \in \mathbb{H}_{+}
\end{array}\right.
$$

satisfies

$$
\|w(t)\|_{\mathbb{H}_{+}} \leq C e^{-\sigma t}\left(\left\|w^{0}\right\|_{\mathbb{H}_{+}}+\left\|P_{+} f\right\|_{\mathbb{H}_{+}}\right), \quad t \geq 0
$$

Thus,

$$
v(t)=1_{\left[t_{0},+\infty\right)} G\left(w\left(t-t_{0}\right)\right)
$$

To express the control v in terms of z_{+}

There exists a kernel $K \in L_{\text {loc }}^{\infty}\left(\mathbb{R}_{+}{ }^{2}, \mathcal{L}\left(\mathbb{H}_{+}\right)\right)$such that

$$
v(t)=1_{\left[t_{0},+\infty\right)}(t) G\left[z_{+}\left(t-t_{0}\right)+\int_{0}^{t-t_{0}} K\left(t-t_{0}, s\right) z_{+}(s) d s\right]
$$

Idea of the proof: Inverse of the Artstein transform:

$$
w(t):=z_{+}(t)+\int_{0}^{t} K(t, s) z_{+}(s) d s
$$

Lemma
Let $D_{\infty}:=\left\{(t, s) \in \mathbb{R}^{2}: t \in(0, \infty), s \in(0, t)\right\}$. There exists $K \in L_{\text {loc }}^{\infty}\left(D_{\infty} ; \mathcal{L}\left(\mathbb{H}_{+}\right)\right)$such that

$$
\begin{aligned}
& K(t, s)=e^{\left(t-s-t_{0}\right) A_{+}} B_{+} p_{+} G 1_{\left(\max \left\{t-t_{0}, 0\right\}, t\right)}(s) \\
+ & \int_{\max \left\{t-t_{0}, s\right\}}^{t} e^{\left(t-\xi-t_{0}\right) A_{+}} B_{+} p_{+} G K(\xi, s) d \xi \quad(t>0, s \in(0, t)) .
\end{aligned}
$$

Proof of the lemma

We set

$$
K_{0}(t):=e^{\left(t-t_{0}\right) A_{+}} B_{+} p_{+} G, \quad K_{0} \in L^{\infty}\left(0, t_{0} ; \mathcal{L}\left(\mathbb{H}_{+}\right)\right)
$$

so the equation writes

$$
K(t, s)=K_{0}(t-s) 1_{\left(\max \left\{t-t_{0}, 0\right\}, t\right)}(s)+\int_{\max \left\{t-t_{0}, s\right\}}^{t} K_{0}(t-\xi) K(\xi, s) d \xi
$$

Let $T>0$, and let us define

$$
D_{T}=\left\{(t, s) \in \mathbb{R}^{2} \mid \quad t \in(0, T), \quad s \in(0, t)\right\}
$$

and

$$
\begin{aligned}
& \Phi: L^{\infty}\left(D_{T} ; \mathcal{L}\left(\mathbb{H}_{+}\right)\right) \rightarrow L^{\infty}\left(D_{T} ; \mathcal{L}\left(\mathbb{H}_{+}\right)\right) \\
&(\Phi K)(t, s)=\int_{\max \left\{t-t_{0}, s\right\}}^{t} K_{0}(t-\xi) K(\xi, s) d \xi, \quad\left((t, s) \in D_{T}\right)
\end{aligned}
$$

The mapping Φ is well-defined, and is a linear and bounded operator of $L^{\infty}\left(D_{T} ; \mathcal{L}\left(\mathbb{H}_{+}\right)\right)$. Moreover,

$$
\|(\Phi K)(t, s)\|_{\mathcal{L}\left(\mathbb{H}_{+}\right)} \leq t\left\|K_{0}\right\|_{L^{\infty}\left(0, t_{0} ; \mathcal{L}\left(\mathbb{H}_{+}\right)\right)}\|K\|_{L^{\infty}\left(D_{T} ; \mathcal{L}\left(\mathbb{H}_{+}\right)\right)} .
$$

Proof of the lemma

$$
\begin{aligned}
& \left\|\left(\Phi^{2} K\right)(t, s)\right\|_{\mathcal{L}\left(\mathbb{H}_{+}\right)}=\left\|\int_{\max \left\{t-t_{0}, s\right\}}^{t} K_{0}(t-\xi) \Phi K(\xi, s) d \xi\right\|_{\mathcal{L}\left(\mathbb{H}_{+}\right)} \\
& \leq\left\|K_{0}\right\|_{L^{\infty}\left(0, t_{0} ; \mathcal{L}\left(\mathbb{H}_{+}\right)\right)} \int_{\max \left\{t-t_{0}, s\right\}}^{t}\|\Phi K(\xi, s)\|_{\mathcal{L}\left(\mathbb{H}_{+}\right)} \\
& \leq\left\|K_{0}\right\|_{L^{\infty}\left(0, t_{0} ; \mathcal{L}\left(\mathbb{H}_{+}\right)\right)}^{2}\|K\|_{L^{\infty}\left(D_{T} ; \mathcal{L}\left(\mathbb{H}_{+}\right)\right)} \int_{\max \left\{t-t_{0}, s\right\}}^{t} \xi d \xi \\
& \leq \frac{t^{2}}{2}\left\|K_{0}\right\|_{L^{\infty}\left(0, t_{0} ; \mathcal{L}\left(\mathbb{H}_{+}\right)\right)}^{2}\|K\|_{L^{\infty}\left(D_{T} ; \mathcal{L}\left(\mathbb{H}_{+}\right)\right)}
\end{aligned}
$$

and by induction

$$
\left\|\left(\Phi^{n} K\right)(t, s)\right\|_{\mathcal{L}\left(\mathbb{H}_{+}\right)} \leq \frac{t^{n}}{n!}\left\|K_{0}\right\|_{L^{\infty}\left(0, t_{0} ; \mathcal{L}\left(\mathbb{H}_{+}\right)\right)}^{n}\|K\|_{L^{\infty}\left(D_{T} ; \mathcal{L}\left(\mathbb{H}_{+}\right)\right)}
$$

End of the proof of the lemma

In particular, for n large enough, Φ^{n} is a strict contraction and consequently if we define $\widetilde{\Phi}$ by

$$
(\widetilde{\Phi} K)(t, s):=(\Phi K)(t, s)+K_{0}(t-s) 1_{\left(\max \left\{t-t_{0}, 0\right\}, t\right)}(s)
$$

then $\widetilde{\Phi}^{n}$ is also a strict contraction. This implies that $\widetilde{\Phi}$ admits a unique fixed point.

Remark
As $\operatorname{rank}(G) \leq N_{+}$, we can write

$$
G(\phi)=\sum_{k=1}^{N_{+}}\left(\phi, \zeta_{k}\right)_{\mathbb{H}} v_{k}, \quad\left(\phi \in \mathbb{H}_{+}\right),
$$

where $v_{k} \in \mathbb{U}_{+}, \zeta_{k} \in \mathbb{H}_{+}^{*}$.

End of the proof of the main result

I remains:

- to prove that this feedback stabilizes the whole system: it does not destabilize the infinite dimensional system that verifies z_{-}

$$
z_{-}^{\prime}=A_{-} z_{-}+B_{-} p_{-} v+\left(I-P_{+}\right) f, \quad z_{-}(0)=\left(I-P_{+}\right) z^{0} .
$$

There exists $\sigma_{-}>\sigma$ such that

$$
\left\|e^{A_{-} t}\right\|_{\mathcal{L}\left(\mathbb{H}_{-}\right)} \leq C e^{-\sigma_{-} t}, \quad\left\|\left(\lambda_{0}-A\right)^{\gamma} e^{A_{-} t}\right\|_{\mathcal{L}_{\left(\mathbb{H}_{-}\right)}} \leq C \frac{1}{t^{\gamma}} e^{-\sigma_{-} t} .
$$

For $t \geq t_{0}$,

$$
\begin{aligned}
& z_{-}(t)=e^{A_{-} t}\left(I d-P_{+}\right) z^{0}+\int_{t_{0}}^{t}\left(\lambda_{0}-A\right)^{\gamma} e^{A_{-}(t-s)}\left(\lambda_{0}-A\right)^{-\gamma} B_{-} p_{-} G w\left(s-t_{0}\right) d s \\
& +\int_{0}^{t} e^{A_{-}(t-s)}\left(I d-P_{+}\right) f(s) d s . \\
& \Longrightarrow\left\|z_{-}(t)\right\|_{\mathbb{H}} \leq C e^{-\sigma_{-} t}\left\|z^{0}\right\|_{\mathbb{H}} \\
& +C e^{-\sigma t} \int_{t_{0}}^{t} \frac{1}{(t-s)^{\gamma}} e^{-\left(\sigma_{-}-\sigma\right)(t-s)} d s\left(\left\|P_{+} z^{0}\right\|_{\mathbb{H}_{+}}+\left\|P_{+} f\right\|_{L_{\sigma}^{2}\left(0, \infty ; \mathbb{H}_{+}\right)}\right) \\
& +C e^{-\sigma t} \int_{0}^{t} \frac{1}{(t-s)^{\gamma^{\prime}}} e^{-\left(\sigma_{-}-\sigma\right)(t-s)}\left\|e^{\sigma s} f(s)\right\|_{\mathbb{H}_{-\gamma^{\prime}}} d s
\end{aligned}
$$

Main result

Using that $\sigma_{-}>\sigma, \gamma<1$ and $\gamma^{\prime}<1 / 2$, we deduce that

$$
\left\|z_{-}(t)\right\|_{\mathbb{H}_{-}} \leq C e^{-\sigma t}\left(\left\|z^{0}\right\|_{\mathbb{H}}+\|f\|_{L_{\sigma}^{2}\left(0, \infty ; \mathbb{H}_{-\gamma^{\prime}}\right)}\right)
$$

Theorem
Assume that (A, B) satisfies the Fattorini criterion. There exists a kernel $K \in L_{\text {loc }}^{\infty}\left(\mathbb{R}_{+}{ }^{2}, \mathcal{L}\left(\mathbb{H}_{+}\right)\right), \zeta_{k} \in \mathcal{D}\left(A^{*}\right), v_{k} \in B^{*}\left(\mathcal{D}\left(A^{*}\right)\right)$, $k=1, \ldots, N_{+}$, such that
$v(t)=1_{\left[t_{0},+\infty\right)}(t) \sum_{k=1}^{N_{+}}\left(z\left(t-t_{0}\right)+\int_{0}^{t-t_{0}} K\left(t-t_{0}, s\right) z(s) d s, \zeta_{k}\right)_{\mathbb{H}} v_{k}$,
stabilizes the whole system

$$
z^{\prime}=A z+B v+f, \quad z(0)=z^{0}
$$

Reminder of the ideas of the proof

$$
\begin{gathered}
\text { Fattorini-Hautus criterion for }(A, B) \\
\left(A^{*} \epsilon=\lambda \epsilon \text { for } \lambda \in \Sigma_{+} \text {and } B^{*} \epsilon=0\right) \quad \Longrightarrow \quad \epsilon=0 \\
\Downarrow
\end{gathered}
$$

Exponential stabilization for the system that satisfies w

$$
\Downarrow
$$

Exponential stabilization for the system that satisfies z_{+}

$$
\Downarrow
$$

Exponential stabilization for the whole system that satisfies z

Outline

(1) Introduction

(2) Main result
(3) Applications

Heat equation

Let $\Omega \subset \mathbb{R}^{N}(N \geq 1)$ be a bounded domain of class $C^{2,1}$ and let $\mathcal{O} \subset \Omega$.

$$
\begin{gathered}
\left\{\begin{aligned}
\partial_{t} z-\Delta z=v 1_{\mathcal{O}} & \text { in }(0, \infty) \times \Omega, \\
z=0 & \text { on }(0, \infty) \times \partial \Omega, \\
z(0, \cdot)=z^{0} & \text { in } \Omega,
\end{aligned}\right. \\
\mathbb{H}=L^{2}(\Omega), \quad \mathbb{U}=L^{2}(\mathcal{O}), \\
A z=\Delta z, \quad \mathcal{D}(A)=H^{2}(\Omega) \cap H_{0}^{1}(\Omega), \quad A=A^{*} . \\
B v=v 1_{\mathcal{O}} .
\end{gathered}
$$

If ε satisfies $A^{*} \varepsilon=\lambda \varepsilon$ and $B^{*} \varepsilon=0$, then

$$
\left\{\begin{aligned}
\lambda \varepsilon-\Delta \varepsilon=0 & \text { in } \Omega, \\
\varepsilon=0 & \text { on } \partial \Omega, \\
\varepsilon=0 & \text { in } \mathcal{O}
\end{aligned}\right.
$$

From standard results on the unique continuation of the Laplace operator, we deduce that $\varepsilon=0$.

Reaction-convection-diffusion equations

Let $\Omega \subset \mathbb{R}^{N}(N \geq 1)$ be a bounded domain of class $C^{2,1}$ and Γ a non-empty open subset of $\partial \Omega$.

$$
\left.\begin{array}{c}
\left\{\begin{array}{c}
\partial_{t} z-\Delta z-b \cdot \nabla z-c z=0 \\
z=v \quad \text { in }(0, \infty) \times \Omega, \\
z=0 \quad \text { on }(0, \infty) \times \Gamma, \infty) \times(\partial \Omega \backslash \Gamma), \\
z(0, \cdot)=z^{0} \quad \text { in } \Omega,
\end{array}\right. \\
\mathbb{H}=L^{2}(\Omega), \quad \mathbb{U}=L^{2}(\Gamma),
\end{array}\right\} \begin{gathered}
A z=\Delta z+b \cdot \nabla z+c z, \quad \mathcal{D}(A)=H^{2}(\Omega) \cap H_{0}^{1}(\Omega) \\
\mathcal{D}\left(A^{*}\right)=H^{2}(\Omega) \cap H_{0}^{1}(\Omega), \quad A^{*} \varepsilon=\Delta \varepsilon-\bar{b} \cdot \nabla \varepsilon+(\overline{c-\operatorname{div} b}) \varepsilon, \\
\left.B^{*} \varepsilon=-\frac{\partial \varepsilon}{\partial \nu} \right\rvert\, \Gamma .
\end{gathered}
$$

If ε satisfies $A^{*} \varepsilon=\lambda \varepsilon$ and $B^{*} \varepsilon=0$, then

$$
\left\{\begin{array}{rlrl}
\lambda \varepsilon-\Delta \varepsilon+\bar{b} \cdot \nabla \varepsilon-(\overline{c-\operatorname{divb}}) \varepsilon & =0 & \text { in } \Omega, \\
\varepsilon & =0 & \text { on } \partial \Omega, \\
\frac{\partial \varepsilon}{\partial \nu} & =0 & & \text { on } \Gamma .
\end{array}\right.
$$

From standard results on the unique continuation of the Laplace operator, we deduce that $\varepsilon=0$.

Oseen system

Let $\Omega \subset \mathbb{R}^{3}$ be a bounded domain of class $C^{2,1}$ and let $\mathcal{O} \subset \Omega$.

$$
\left\{\begin{aligned}
\partial_{t} z+\left(w^{S} \cdot \nabla\right) z+(z \cdot \nabla) w^{S}-\nu \Delta z+\nabla q=1_{\mathcal{O}} v & \text { in }(0, \infty) \times \Omega \\
\nabla \cdot z=0 & \text { in }(0, \infty) \times \Omega \\
z=0 & \text { on }(0, \infty) \times \partial \Omega \\
z(0, \cdot)=z^{0} & \text { in } \Omega
\end{aligned}\right.
$$

$$
\mathbb{H}=\left\{z \in\left[L^{2}(\Omega)\right]^{3}: \nabla \cdot z=0 \text { in } \Omega, z \cdot n=0 \text { on } \partial \Omega\right\}, \quad \mathbb{U}=\left[L^{2}(\mathcal{O})\right]^{3}
$$

We denote by \mathbb{P} the orthogonal projection $\mathbb{P}:\left[L^{2}(\Omega)\right]^{3} \rightarrow \mathbb{H}$.

$$
\begin{gathered}
\mathcal{D}(A)=\left[H^{2}(\Omega) \cap H_{0}^{1}(\Omega)\right]^{3} \cap \mathbb{H}, \quad A z=\mathbb{P}\left(\nu \Delta z-\left(w^{S} \cdot \nabla\right) z-(z \cdot \nabla) w^{S}\right) \\
B v=\mathbb{P}\left(1_{\mathcal{O}} v\right), \quad B^{*} \varepsilon=\varepsilon_{\mid \mathcal{O}}
\end{gathered}
$$

If ε satisfies $A^{*} \varepsilon=\lambda \varepsilon$ and $B^{*} \varepsilon=0$, then

$$
\left\{\begin{aligned}
\lambda \varepsilon-\nu \Delta \varepsilon-\left(w^{S} \cdot \nabla\right) \varepsilon+\left(\nabla w^{S}\right)^{*} \varepsilon+\nabla \pi=0 & \text { in } \Omega \\
\nabla \cdot \varepsilon=0 & \text { in } \Omega \\
\varepsilon=0 & \text { on } \partial \Omega \\
\varepsilon \equiv 0 & \text { in } \mathcal{O}
\end{aligned}\right.
$$

By [Fabre Lebeau 1996], we deduce that $\epsilon=0$.

Navier-Stokes system

We consider the stabilization of the Navier-Stokes system with internal control:

$$
\left\{\begin{aligned}
\partial_{t} \widetilde{z}+(\widetilde{z} \cdot \nabla) \widetilde{z}-\nu \Delta \widetilde{z}+\nabla \widetilde{q}=1_{\mathcal{O}} v+f^{S} & \text { in }(0, \infty) \times \Omega \\
\nabla \cdot \widetilde{z}=0 & \text { in }(0, \infty) \times \Omega \\
\widetilde{z}=b^{S} & \text { on }(0, \infty) \times \partial \Omega \\
\widetilde{z}(0, \cdot)=\widetilde{z}^{0} & \text { in } \Omega
\end{aligned}\right.
$$

around the stationary state

$$
\left\{\begin{aligned}
\left(w^{S} \cdot \nabla\right) w^{S}-\nu \Delta w^{S}+\nabla r^{S}=f^{S} & \text { in } \Omega \\
\nabla \cdot w^{S}=0 & \text { in } \Omega \\
w^{S}=b^{S} & \text { on } \partial \Omega
\end{aligned}\right.
$$

We obtain the local stabilization result for the Navier-Stokes system with internal control with delay.

Conclusion

Conclusion

- Large class of parabolic systems with input delay
- The Fattorini-Hautus criterion yields the existence of such a feedback control, as in the case of stabilization without delay
- Application to several systems

Open problems

- Time dependent delay
- Presence of disturbances

Happy birthday Marius!

