Karim Ramdani

Joint work with Renata Bunoiu, Lucas Chesnel,
Mahran Rihani, Claudia Timofte

FMCARTAN &'z P

zea—

Institut



Effective/Homogenized model

Derive, via an asymptotic analysis, simpler macroscopic models
from complicated microscopic models, especially for numerical
simulations.

Photonic crystals, composite materials, porous media,... '




ey cY =(0,1)% : microscopic (fast) variable

al fory ey,

1—periodic conductivity : a(y) =
as foryeYs

e z € 0 C R? : macroscopic (slow) variable

{al for x € O

e—periodic conductivity : a°(z) = a (£> =
ay for x € 5

g



—div (a®(z)Vu®) = f, in
(P%)
u® = 0, onT.

Variational formulation: Find v € H}(Q) such that:

/ a(x)Vu® - Vode = / fvdz, Yo € HY ().
Q Q

@ Does uf have a limit ?

@ If so, what problem does this limit solve ?



PERIODIC HOMOGENIZATION

—div (a*(x)Vu®) = f, in
(P%)
u® = 0, onI.

Variational formulation: Find u® € H}(£2) such that:

/ a®(x)Vu® - Vodr = / fvde, Yo € HY ().
Q Q

@ Does uf have a limit ?
@ If so, what problem does this limit solve ?

For elliptic problems (i.e. when a; > 0 and as > 0), these ques-
tions are very well understood.



The homogenized problem reads

—div (af'Vu) = f, in Q
(P){ (a"Vu)
u = 0, onT,

where



The homogenized problem reads
—div (af'Vu) = f, in Q

oy (V)
u = 0, onT,

where
e afl = (a5)1<i,j<2 is the constant symmetric matrix:

z] - / VXz + e'l) (VXJ + ej) dya



The homogenized problem reads

—div (af'Vu) = f, in Q
(P){ (a"Vu)
u = 0, onT,

where
e afl = (a5)1<i,j<2 is the constant symmetric matrix:

z] - / VXz + 61) (VXJ + ej) dy,
® X1,X2 € H#( )/R solve the cell problems:

—div (a(y)Vxi) = div (a(y)e;) inY
Xi is Y -periodic.



PERIODIC HOMOGENIZATION

The homogenized problem reads

) { —div (aHVu)

u = 0, on I,

1, in

where
o afl = ((IZ]';I')1<1'J‘<2 is the constant symmetric matrix:

1_7 - / VXZ + 61) (VX] + 6]‘) dyv
® X1,X2 € H#( )/R solve the cell problems:

—div (a(y)Vx;) = div (a(y)e;) , inY

Xi is Y -periodic.

Variational formulation: Find u € H}(Q) such that:

/ af (2)Vu - Vodz = / fvde, Vo € HY ().
Q Q



In the elliptic case, problems (P¢) and (P) are well-posed in HZ ()
and the sequence (uf) weakly converges to u in H} ().




The proof is based on three steps:

(P?) is well-posed and we have: ||Vu®||;2q) < C.



The proof is based on three steps:
(P?) is well-posed and we have: ||Vu®||;2q) < C.

@ u® two-scale converges to a solution u of (P).



PERIODIC HOMOGENIZATION

The proof is based on three steps:

(P?) is well-posed and we have: [|[Vu®||12q) < C.

u® two-scale converges to a solution u of (P).

(P) is well-posed as the matrix a’! is positive definite:

1
afe € > ( / a*(y)dy) €2 V= (6,6)T € R



The proof is based on three steps:

(P?) is well-posed and we have: ||Vu®||;2q) < C.
@ u® two-scale converges to a solution u of (P).

(P) is well-posed as the matrix a’ is positive definite:

1
aﬂg-o(/y a—l(wdy) €2 Ve=(6.6)" € B2,

What happens for non elliptic problems (a; > 0 and ay < 0) ?

/a6 Vu- Vo, / aff Vu - Vv are not coercive —> JZ[ JZ[
Q Q
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Assume that a; > 0 and ay < 0 and define the contrast

a1
K= —.
|az]
Then, there exists two constants ry ., k- > 0 such that for
K> Ky or Kk < 1/kKYy,

problems (P¢) and (P) are well-posed and u® weakly converges to
win HY(Q).




COMMENTS

e ry and k),
Depend only on the geometry of the reference cell, and are given
by continuity constants of some harmonic extension operators
(from Y; to Y3 or vice versa).

e Bibliography

e First proved by Bunoiu-R. (2016) for large contrasts using the
T-coercivity method...

e ...generalized by Bonnetier, Dapogny and Triki (2019) to small
contrasts using the Neumann—Poincaré Operator...

e ...and to other scalar sign-changing problems (Dirichlet and
Neumann) and Maxwell's system by Bunoiu-Chesnel-R.-Rihani
(2021).
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Find u € V, A(u,v) = (f,v), YveV.

Coercivity : There exists v > 0 such that

A(u,u) 2 lull?,

YuelV.




Find u € V, A(u,v) = (f,v), YveV
T-Coercivity: There exists v > 0 and T € L(V) invertible such that

Alu, Tu) = ~ul?, VueV.




Theorem

Let A%(-,-) be a uniformly continuous bilinear form on a Hilbert
space V such that there exists a family ('T<) of uniformly boundedly
invertible operators on V satisfying

Iy >0: A% (u, Tu) = |l VueV.
Then the variational problem
Find u® € V, A*(u®,v) = (f,v), Yv eV,

is well-posed and we have the uniform estimate: ||u®|| < C||f]|.

@ Introduced by Bonnet-Ben Dhia, Ciarlet Jr. et al. (2008,
2012,...) to study non elliptic problems (well-posedness, nu-
merical analysis) and Helmholtz type problems.

@ For symmetric forms, the invertibility of (T) can be dropped
and T-coercivity is equivalent to the inf—sup condition.
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Yi

©

The weak formulation of the cell problems in the space

Ve = {uemb)| [u=of,  July, = |Vula)

takes the form

Find v € V4 such that Vv € Vi :

A(u,v) :z/ya(y)Vu~VU:/va.



For all u € Vi, setting uy := ujy;, ug := upy,:

A(u, Tu) = /Ya(y)Vu-V(Tu)

= . Vuy - V(TU) + as v, Vus - V(Tu)
1

... inh
Tu= in Y.



For all u € Vi, setting uy := ujy;, ug := upy,:

A(u, Tu) = /Ya(y)Vu-V(Tu)

= . Vuy - V(TU) + as v, Vus - V(Tu)
1

U1 in Y1
tu= —ug in Ys.



For all u € Vi, setting uy := upy;, ug := ujy,:

A(u, Tu) = /Ya(y)Vu-V(Tu)

= . Vuq - V(TU) + as v, Vus - V(Tu)
1

U1 inY;
tu= —w5 in Ys.



For all u € Vi, setting uy := ujy,, ug := ujyy:

A(u, Tu) = /Ya(y)Vu-V(Tu)

= a1 | Vu-V(Tu)+a2 [ Vug-V(Tu)

Y1 Y2

in Y]

Ty = (5] In xp
—UQ—‘rQP(ul) in Ys.

where P denotes the harmonic extension from Y7 to Y5.



For all u € Vi, setting uy := ujy;, ug := ujyy:

A(u, Tu) = /Ya(y)Vu-V(Tu)

= a1 [ Vup-V(Tu)+az [ Vug-V(Tu)
Y1 Yo

_ in Vs _ _
Tu = “ n A Tu:zTu—(/Tu)EV#.
—ug+2P(u1) in Ya. Y
We cleary have:
T e ﬁ(V#)



It is well-known?! that there exists ky > 0 such that:

I9Pu) By < mvIVanlas) Vo HI(Y).

Proposition
For k > Ky, there exists v > 0 such that for all u € Vy:

A(u, Tu) = /

| aW)Vuy) - V(Tu)(y) dy > 7 VullZey),

1See e.g. Lemma 2.9 in the book of Cioranescu and Saint Jean Paulin



~ —~ ~ Ul in Yi
Tu::Tu—(/Tu), Tu = )
Y —ug+2P(up) in Ys.

AwTw) = [ o) Vu@) - V(Tw() dy



~ ( ~ ~ uUq in Y7
Tu :=Tu — / Tu) , Tu =
Y —U2+2P(U1) in Ys.

AwTw) = [ o) Vu@) - V(Tw() dy

a1/ |V’LL1|2+|(12|/ |Vu2|2+2a2/ Vuy - V(Puy)
Y1 Yo Y2



-~ ~ ~ U1 in Y7
Tu:zTu—(/Tu), Tu = _
Y —ug+2P(up) in Y.
AlwT) = [ a(y)Vuly) - V(Tu)(y) dy
= o [ Vil tla] [ [VaaP + 20 [ Var - V(Pu)
Y Yo Y2

> fs|a2|/ \vu1|2+|a2\/ Vs ?
Yl Y2

a
_“12|77/ |Vus|? — M/ |V (Puy)|? (Young)
Y2 77 Y2



~ ( ~ ~ uUq in Y7
Tu :=Tu — / Tu) , Tu =
Y —U2+2P(U1) in Ys.

A(u, Tu)

WV

WV

J awVulw) - V(Tu() ay
a1/ |VU1|2+|(12|/ |Vuz|2+2a2/ Vuy - V(Puy)
Y1 Yo Y2

slasl [ Vw4l [ Vsl
Y1 Yo

a
—\a2|77/ |Vaug|* — M/ |V (Puy)|? (Young)
Y2 77 Y2

ol { (=22 [ 19w+ =) [ 1Vu?)



~ ~ ~ Ul in Y1
Tu=Tu- </y Tu) o Tes {—uz-|—2P(u1) in Ya.
AwTw) = [ o) Vu@) - V(Tw() dy

= a1/ |VU1|2+|(12|/ |Vu2|2+2a2/ Vuy - V(Puy)
Y1 Yo Y2

asl [ Vi +as [ [9u?
Y1 Yo

a
—\a2|77/ |Vaug|* — M/ |V (Puy)|? (Young)
Y2 77 Y2

ol { (=22 [ 19w+ =) [ 1Vu?)

fy/ |Vul?, if K > Ky and n € (ky /K, 1).
Y

WV

WV

WV



To handle the case of small contrasts, we introduce the Dirichlet
harmonic extension operator from Y5 to Yi:

_A(QSD) =0 in Y17
Qp = ¢ on 9Ys,
Qp = 0 on dY.

It can be proved? that there exists x}- > 0 such that

IV(Q) 1720y < 55 IVOlZaryys ¥ € Hinean(Y2),

where

1
Hiheun(Y2) = {0 € H'(Y2) | Ma(0) =0}, Ms(9) = == | pdy.
’Y2’ Y2

2See, e.g., Lemma 2.3. in Cazeaux-Grandmont-Maday, 2015.



Define T € L(Vx) by
Tu := Tu — (/ ’i‘u),
Y

Tu _ U1—2Q(UQ — MQ(UQ)) in Yl
—ug + 2Ma(ug) in Yo,

where

For k < 1/kY, there exists ' > 0 such that for all u € V:

A, Tw) = | o) Vuly) - V(Tu)w) dy > 7 Tulfag,




Assume that

k>ky o k<I1/Ky

Then, the cell problems, i = 1,2 :

—div (a(y)Vxi) = div (a(y)e;), inY
Xi Iis Y -periodic,

are well-posed.
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Uy in Qf

—ug + 2P%(u1) in Q5.



Uy in Qf

—ug + 2P%(u1) in Q5.



Vue HY(Q): Tu=

—ug + 2P%(u1) in Q5.

Ve=e(y+k)€Q : (Pu)(x) = (Pup)ly ) up(y) = u(@).

For all u € H}(Q), we have: |V (Pu)|® < Ky |Vu|2



Vue HY(Q): Tu=

—ug + 2P%(u1) in Q5.

Ve=e(y+k)€Q : (Pu)(x) = (Pup)(y), wuily):=u().
For all u € H}(Q), we have: |V(Pu)|? < sz/ |Vul?.
Q3 Q

= / z)Vu - V(Tu) > / |Vul?, VK > Ky.
Q



M (u / , Vz € eYK.
|5Y2| Yk dx T €cYy
Hean (25) = {u € H'(Q5) | M5(u) = 0}

Ty — {Ul —2Q° (ug — M5(u2)) in Qf, (1)

—ug + 2M5(u2) in Q5.



1
M5 (u)(x :—/ udzx, Vz € eYK.
2( )( ) |€)/2k| €Y2k 2
Hean (25) = {u € H'(Q5) | M5(u) = 0}

Ty — up — 2QE(U2 - ME(UQ)) in Qi,
—ug + 2M5(u2) in Q5.

Ve=e(y+k) e (Qu)(x):=(Qui)ly), uply):=u@)



M (u / , Vz € eYK.
|€Y2| Yk dx T €cYy
Hean (25) = {u € H'(Q5) | M5(u) = 0}

Ty — up — 2QE(U2 - ME(UQ)) in Qi,
—ug + 2M5(u2) in Q5.

Ve=e(y+k)€Q : (Qu)(z):=(Qup)(y), uily):=u(z).
We have

Jo V@ P < [V Y€ B (03)



€ k
Mi( |€Y2|/Yk dez, Vo € Yy

Hoan(5) = {u € H(5) | M5(u) = 0}

Teu _ {m - 2Q5(u2 — ME(UQ)) ?n Qi, (1)
—ug + 2M5(u2) in Q5.
Ve=c(y+k)eQ : (Qu)(z):=(Qup)ly), uip(y):=u@).
We have
Jo V@ P < [V Y€ B (03)

= / xz)Vu - V(T u) >’y/|Vu|2 Vi < 1/KY.



Theorem
Assume that
K> Ky or K< 1/K%.

Then for every f € L*(Q), the problem
—div (a®(x)Vu®) = f, in £
(P°)
ut = 0, onT
admits a unique solution u® and there exists C' > 0 such that

V| L2y < Cll fll2(0)-
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One can not pass to the limit directly in / a®(x)Vu(x)Vu(z)de,
Q

as a® and u® converge only weakly.



One can not pass to the limit directly in / a®(x)Vu(x)Vu(z)de,
Q

as a® and u® converge only weakly.

Two-scale convergence (Nguetseng 89', Allaire 92")

A sequence (uf) in L%(Q) two-scale converges to a function
u(z,y) € L2(2 x Y) if for any Y- periodic smooth function ¢(z,y)
defined on 2 x Y :

lim [ u®(x)¢ <x, x) de = / u(z,y)p(z,y)de dy.
Q £ Qxy

e—0

This yields a separation between the macroscopic and microscopic
scales, the oscillations of u® being encoded in the variable y of u.
Theorem

Every bounded sequence in L?(Q) admits a two-scale converging
subsequence.




Theorem
There exists u € H}(Y) and @ = @iz, y) € L*(Q; V) such that:

@ uf converges to u weakly in H}(Q) and strongly in L*(Q).

o Vuf two-scale converges to Vu + Vi in [L2(Q x Y)]*.

@ The pair (u,u) solves the two-scale limit problem:

/QXY a(y) [Vu(x)—i—vyﬁ(x,y)} . {Vv—i-vyﬁ(m,y)} drdy = /va,

for all v € H}(Q) and v € L*(Q; V).




@ MaN rRESULT

© T-corrcIvVITY

© WELL-POSEDNESS IN YV

@ WELL-POSEDNESS IN

© Two-scALE CONVERGENCE

© WELL-POSEDNESS OF THE HOMOGENIZED PROBLEM



Assume that

K > Ky or Kk < 1/Ky.

Then, the homogenized problem

(’P){ —div (aHVu) = f, in Q

u = 0, onT,

is well-posed in H}(€2).




PROOF (Outline)

@ We first prove that the two-scale limit problem is well-posed.

e We (classically) show that the two-scale limit problem admits
an equivalent uncoupled formulation

o the homogenized problem (P) defined in 2 for u
—div (aHVu) = f, in Q
(P)
u = 0, on T,

e an explicit expression for @ involving the cell problems in Y:

e.9) = 1) 5 (0) + x2l0) e (2.

@ We conclude to the well-posedness of (P).



PROOF (Well-posedness of the 2-scale limit problem)

M = Hy(Q) x L} (2 Vy)
1
Ul = {IVulBag + IVyiliaaer YU = (w,@) € H
= [[Vu+ Vyilr2@xy).-

The two-scale limit problem reads:

Find U = (u,u) € H such that
B(U,V):/ fo, VYV = (0,0) € H,
Q
where

= [ [ oot} st



TU = (u,TT), YU = (u,0) € H,

. ~ ~ ~ ul in Yl
with: Tu := Tu — (/ Tu), Tu = .
Y —UQ+2P(U1) inYs.



TU = (u,TT), YU = (u,0) € H,

. ~ ~ ~ ul in Y1
with: Tu := Tu — (/ Tu), Tu = .
Y —UQ+2P(U1) inYs.

B, TU) = /

oy a(y) [Vu(m)—i-vyﬂ(x, y)} . [Vu(x)+VyT'ZZ(a:, y)} dz dy,



TU = (u,TT), YU = (u,0) € H,

. ~ ~ ~ ul in Y1
with: Tu := Tu — (/ Tu), Tu = .
Y —UQ+2P(U1) inYs.

B, TU) = /

oy a(y) [Vu(m)—i-vy'z’l(x, y)} . [Vu(x)+VyT'ZZ(m, y)} dx dy,

Setting ¥ = y — My (y), we have

Vu(z) + Vytu(z,y) = V, [Vu(x) -y + Uz, y)} = V,U.(y)



PROOF (Large Contrasts)

TU = (u, Tu), YU = (u,u) € H,
with: Tu := Tu — (/ ’i‘u>, Ty = (151 in Y]
Y —ug+2P(uy) in Ya.

B, TU) = /

oy a(y) {Vu(a:)—l—vyﬁ(:c, y)} . [Vu(x)+VyT1’Z(a:, y)} dzx dy,

Setting 7 =y — My (y), we have

)
y {Vu ) -y+ Tﬂ(x,y)}
- Ty + Tu(x, y)}

Vu(z) +V,Tu(z,y) = V
=V
\%



BU,TU) =/QXY a(y) [Vu(x) + Vyﬂ(x,y)] : [Vu(:c) + VyTﬂ(x,y)] dz dy
_ /Q ( /Y ()Y, Us(y) - ¥y (TUs (1) dy) du,

> [ 193Uslaqy, do

=’y||U||3_t, VK > K.



Tu::i“u—(/yi?u),

’i‘u _ u1—2Q(u2 — M2(’LL2)) in Y1
—ug + 2M2(u2) inYs,

with



Tu::i“u—(/yi‘u),

’i‘u _ u1—2Q(u2 — Mz(UQ)) in Y1
—ug + 2M2(u2) inYs,

with

A\

Affine functions are not invariant by the harmonic extension
Q from H'(Y3) to H}(Y), and hence by T.



For all U = (u,u) € H, set:

TU = (u,0), v :=Tu+ Vu(z) - [Ty — 7



For all U = (u,u) € H, set:
TU = (u,0), 0 :=Tu+ Vu(z) - [Ty — 7

BU,TU) = /Q><Y a(y) [Yu(x) -yv+ u(z,y) ] : [Vu(m)+vy17(x,y)] dz dy,
Uz(y)




For all U = (u,u) € H, set:

TU = (u,0), 0 :=Tu+ Vu(z) - [Ty — 7

BU,TU) = /Q><Y a(y) [Yu(x) g+ a(z,y) ] : [Vu(m)+vy17(x,y)] dz dy,
Us(y)
Vyo(z,y) = Vy(Tu+ Vu(z) - Ty) — Vy(Vu(z) - 7)

<

\%
= V,(Tu+ Vu(z)-T
Vy (TU,) — Vu(x).



PROOF (Small Contrasts)

For all U = (u,u) € H, set:

TU = (u,v), v:=Tu+ Vu(z) - [Ty — 7]

B, TU) = /

v,i(z,y)

BU, TU)

QxY

aly)| V() -7+, y) | [Vu(@)+9,0(r, )| dedy,

Uz(y)
V, (T4 + Vu(z) - T7) - V,(Vu(x) -7)
Vy (T4 + Vu(z) - Ty) — Vu(x)
\%



CONCLUDING COMMENTS

© The matrix a!l is positive definite for x > ky and kK < 1/}

@ For 1/k} < k < Ky and smooth interface 0Y3, (P°) is well-
posed if and only if

k& {ry,n > 1},

&

where (k) is a sequence tending to 1. It is not clear whether
there exists or not (and under what conditions on the geometry)
a non empty subset of the critical interval which is uniformly

free of the values «;, as ¢ — 0.

© We have extended these results to other operators (scalar sys-
tems with extreme contrasts, Maxwell's equations) and other
geometries (thin periodic domains).
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Figure: A split-ring resonator array arranged to produce a negative index
of refraction (Wikipedia).

Metamaterials

Metamaterials (also called negative or left-handed materials) are ar-
tificial composite materials exhibiting negative dielectric permit-
tivity and magnetic permeability over some range of frequencies,
and hence behaving as negative refractive index materials (Victor
Veselago in 1967, John Pendry in the late 90's).

Optical Applications : superlens, cloaking, biomedical imaging...
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