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Marius ... a little younger...
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The subject of this presentation is a good opportunity to dedicate also this
work to the memory of

Caroline Fabre.

who passed away in 2020 ...
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Distributed controllability problem with control on an e-neighborhood of a part
of the boundary.

What happens when ¢ — 0? Do we have "convergence" to a boundary
controllability problem ?

Notations :

Q is a bounded regular open set of RY with boundary I'. Q = Q x (0, 7).

o is a non empty open subset of I and

we = (B(x.) N Q).

xely

For the wave equation we worked on this question in the early 90’s together
with Caroline Fabre.

e C. Fabre, J.-P. Puel, Behavior near the boundary for solutions of the wave
equation. J. Differential Equations, 106 (1993), no. 1, 186-213.

e C. Fabre, Exact boundary controllability of the wave equation as the limit of
internal controllability. SIAM J. Control Optim., 30 (1992), no. 5, 1066—1086.
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Recently

Collaboration with Felipe Chaves-Silva and Mauricio Cardoso-Santos

we worked on the case of the heat equation which had not been considered
before.

e FW. Chaves-Silva, J.-P. Puel and M.C. Santos, Boundary null controllability

as the limit of internal controllability: The heat case. ESAIM: COCV 26 (2020)
91.
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Problem for the wave equation

Oy — Ay = v.L,_in Qx (0, T),
y=0onT x(0,7),
}/(0, X) = yO(X)7 8{}/(0, X) =" (X) inQ,
y(T,x) =0, ay(T,x)=0inqQ.

In order to solve this problem we need a geometric condition (cf.

Bardos-Lebeau-Rauch) saying essentially that every ray of the geometric
optics, propagating at speed 1 meets w. before time T.
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Case of the wave equation
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Case of the wave equation

Using Lions’ H.U.M. we find a solution for y, € H3(Q) and y1 € L3(Q) by
considering the adjoint equation

Ope — Aype =0in Q2 x (0, T),

we=00nT x(0,7),

©e(0,X) = peo(X), Orpe(0, X) = et (X) INQ,
for peo € L2(Q) and ¢4 € H~'(Q) suitably chosen thanks to the observability
inequality

2 2 2
[peolZeiy + et |21y < C(e) / o e O anat
we X (0,
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Case of the wave equation. Passage to the limit

No hope to obtain classical estimates as the boundary condition cannot be
preserved.

Three main difficulties.

e We can show that when we have

1

= loe(x, t)[Pdxdt < C
)

we X(0,T

where C is independent of ¢, and when ¢, coverges weakly to ¢ (in the
natural spaces), then at the limit

Oy 2
EM e [(To x(0,T),)

and if (['p, T) satisfies the geometric condition then ¢ is a solution of finite
energy and the initial conditions at the limit verify (w0, 1) € Hy () x L2(%).
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Case of the wave equation. Passage to the limit

e Then we show that the constant C(¢) satisfies
Cle) = O(e ™).

This is a key point to obtain an estimate for the control.
e We then have to pass to the limit in a weak formulation of the wave
equation to obtain at the limit the following boundary controllability system.

Ory — Ay =0in Q x (0, T),
_ 10y
y=-35, " lo x(0,T),
y=0o0n (I"'\To) x(0,T),
¥(0,X) = yo(x), 0ty(0,x) = y1(x) inQ,
y(T,x)=0, ay(T,x)=0inQ,

where ¢ is solution of the adjoint problem at the limit.
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Case of the heat equation

Oy — Ay = ve.L,_ in Qx (0, 7),

y=0onT x(0,T7),

¥(0,x) = yo(x), inQ,

y(T,x)=0, inQ.
Here we do not need any geometric condition and it is by now classical that
this problem has a solution for any T > 0.
We solve this problem thanks to the following observability inequality

(P(0) e < O [ [oPaat

we %x(0,T)
where ¢ is solution of the adjoint problem

—0p—Np=0in Q2 x (0, T7),
p=00onT x (0, 7),
o(T,x) =7, INQ.
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Case of the heat equation

Difficulties :

e The usual way to obtain this inequality is to use a global Carleman estimate
with a principal positive regular weight having zero boundary condition and a
non vanishing gradient in Q \ we, therefore a very steep gradient in w..

e There is no hope to obtain estimates of C(e) directly with this method. We
will show that C(e) = O(e~2) and this is sharp and is the major difficulty of
this work.

e Passage to the limit which is treated in an analogous way as for the case of
the wave equation.
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Sharp Carleman estimate-Weights

We start with a basic weight «» € C?() such that
|Vah(x)| > 0V¥x € Q, and g—lﬁ(x) <0Vx eTl\T.

Then for A > 0 we set

AW ()+m) AW)+m) _ A(I19]lootm)

s X, ) = ;
HT -1t T -1

P(x, 1) =

where for example my = ||¢||s + 2 and mz> = ||¢)||oc + 3. Then « is negative
and for s > 0 terms like €°5*¢* are uniformly bounded.
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Sharp Carleman estimate

We introduce the notation

I(s,)\,<p):s3/\4/ ezsa¢>3\ap|2dxdt+s)\2/ €% ¢| V|2 dxalt
Q Q

_’_571 / ZSa (‘SOI

e We begin with a boundary Carleman estimate
There exists C such that for s and ) large enough

%)dxdt

(s, ), 5) < CsA / 56| 22 Pt
Fox(0,T) ov

This is relatively classical.
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Sharp Carleman estimate

e Then we prove that for any § > 0 we can fin C(9) such that

s\ / &5 6| 92 2ayat < C(5)e 352 / &5 ¢ | o2axat-+61(s, A, ).
rox(0,T) ov wex(0,T)

This part is long and very technical. It requires a covering of the boundary,
transformation to local coordinates and very sharp estimates.
e Putting this together we obtain the following Carleman estimate

I(5, ), ) < Ce 367 \* / &5 ¢ | o[2dxatt
we X(0,T)
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Observability inequality

Let us define

T2 T LT
= — <t< — = — —<t<T.
I(t) 7 if 0 t_2,l(t) (7 t)|f2_t_T
And then
eA(w(XH'"H) ek(w(x)‘*'m” _ ek(HwHoc‘*'mZ)
V(th)_T, /6(X7t)_ /(t) ’

We now use the notation

J(s, A, o) = o0 / &3 ol2dxdlt + X2 / &%V o2 dxalt
Q

256
ts / "(rl? *Z‘axax )dxalt

Using classical energy estimates with a cut-off function we deduce the
observability inequality (again for s and X large enough)

[#(0) e + (s 9) < O [ gt

ex(0,7)
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Construction of a sequence of controls

In order to simplify take
7" (1) = maxy(x, ), and 57(t) = max 5(x, t).

This enables us to find, for the distributed controllability problem, a control v.
of the form

253* 7
Ve = =€ 4",

&
where . is a solution of the adjoint problem suitably chosen, which
converges weakly to ¢ also solution of the adjoint problem.
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Passage to the limit

We then have

Oty — Aye = 61—3e255*7*7g05.1w6 inQx(0,7),
Ye=0onT x(0,7),
Ye(0,x) = yo(x), inQ,
Ye(T,x)=0, inQ.
The construction of ¢, implies
1 <
= &7 7| [Paxdlt < Clyolfeay,
€ Jwex(0,T)

and the convergence
* 7 * 7
e v ip. - e Y 2.
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We have a heat equation with a right hand side concentrated and becoming
singular.

We then proceed as for the case of the wave equation in a quite analogous
way by passing to the limit in the weak formulation of the controlled equation
and we obtain at the limit the boundary control problem

oy—Ay=0in Qx (0,7),
y= —%9255 7*78@ on Iy x (0,T),
y=0o0n(I\To) x(0,7),

¥(0,x) = yo(x), inQ,
y(T,x)=0, inQ.
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Viata lunga Marius

Thank you for your attention
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