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1D simplified model

• We consider a one dimensional model for the motion of a particle
(piston) in a cylinder filled with a viscous fluid.

−1 1
h(t)

• fluid-piston system evolves in the interval (−1, 1) or R and
h : [0,∞) 7→ (−1, 1)( or R) denotes the position of the particle.

• The extremities of the cylinder are fixed in the case of BVP.

• The fluid is modelled by the 1D viscous Burgers equation, whereas
the piston obeys Newton’s second law.



Governing equations
Motion of the gas:
Described in the Eulerian coordinate system by its velocity u = u(t, x),
which satisfy the one dimensional Burgers equation

∂tu + u∂xu − ∂xxu = 0, t > 0, x 6= h(t)

(BVP) ∼ u(−1, t) = 0 = u(1, t)

Motion of the Piston: Described by Newtons law :

mḧ(t) = [∂xu](t, h(t)) (t > 0),

where m is the mass of the piston and the symbol [f ](t, x) stands for the
jump at instant t of f at x , i.e.,

[f ](t, x) = f (t, x+)− f (t, x−).

Equality of the velocity:

u(t, h(t)) = ḣ(t) (t > 0),

The position of the piston (and, consequently, the domain occupied by
the gas) is one of the unknowns of the problem, we have a free boundary
value problem.



Goal

• Existence and uniqueness of solutions.

• Large time behaviour of the point particle:

• h(t) remains bounded for all time.
• Particle escapes to spatial infinity.
• BVP ∼ (No) contact with the fluid boundary.

• Control and Stabilization problem: move the point particle from one
point to another.

Well-posedness: Vázquez and Zuazua (03, 05),

Control and Stabilization : Doubova and Fernández-Cara (05), Liu,
Takahashi and Tucsnak (13), Ĉındea et. al. (15), Ramaswamy, Roy and
Takahashi (20), Badra and Takahashi (14)



Cauchy problem

• For any (u0, `0) ∈ L2(R)× R, the system admits a unique global
solution u ∈ C ([0,∞); L2(R)), h ∈ C 1([0,∞)).

• u0 ∈ L2(R) ∩ L1(R) and M =
∫
R\{0} u0dx + m`0 6= 0, then

‖u(t)‖Lr (R) . t−1/2(1−1/r), t > 0, r > 1.

1

c
(1 + t)−1/2 < h′(t) < c(1 + t)−1/2,

for some c > 1, and c is explicit in terms of M.

• Thus the particle escapes to spatial infinity:
∫∞

0
(1 + t)−1/2 =∞.



BVP

• For any h0 ∈ (−1, 1), (u0, `0) ∈ H1
0 (−1, 1) with u0(h0) = `0 the

system admits a unique global strong solution

u ∈ L2(0,T ;H2) ∩ H1(0,T ; L2), h ∈ H2(0,T ),

(No contact) h(t) ∈ (−1, 1) for all t > 0.

• We also have

‖u(t)‖L2 + |h′(t)| . e−γt and lim
t→∞

h(t) = h∗ ∈ (−1, 1).

• What is h∗?



1D piston problem

• Fluid: Compressible Navier-Stokes.

• ρ : density of the fluid, u : velocity of the fluid.

∂tρ+ ∂x(ρu) = 0 t > 0, x ∈ R \ {h(t)},
ρ(∂tu + u∂xu)− ∂xxu + ∂x(ργ) = 0 t > 0, x ∈ R \ {h(t)},
u(t, h(t)± 0) = h′(t) t > 0,

mh′′(t) = [∂xu − ργ ](t, h(t)) t > 0,

+ initial data

• Bounded domain - fluid domain: (−1, 1) \ {h(t)} and u(t,±1) = 0.



1D piston problem

• Unbounded domain : Koike (2020)

|h′(t)| . (1 + t)−3/2 =⇒ |h(t)− h0| 6 C .

• Bounded domain : Shelukhin(1977, 1982)

‖u(t)‖2 → 0, ‖ρ(t)− ρ‖2 → 0, h′(t)→ 0

lim
t→∞

h(t) =
ML −MR

ML + MR
, ML =

∫ h0

−1

ρ0, ML =

∫ 1

h0

ρ0,

• Adiabatic piston in bounded domain: Feireisl et. al. (18)
∼ limt→∞ h(t) = h∗, and h∗ is unknown.



Our result

Let us consider fluid rigid body problem in whole R3, where fluid is
incompressible Navier-Stokes and the rigid body is a ball.

Theorem

If the initial datum is small enough in suitable norm then the position of
the center of the rigid ball converges to some h∗ ∈ R3 as time goes to
infinity.

∼ S. Ervedoza, D. Maity and M. Tucsnak, Large time behaviour for the
motion of a solid in a viscous incompressible fluid, (hal-02545798).
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3D problem

ΩF (0)

ΩF (t)

ΩS(0)

ΩS(t)
Ω

Ω

Initial Configuration
Deformed Configuration

• Fluid + rigid body = Ω ⊂ R3 or Fluid + rigid body = R3.

• Ωs(t) ∼ the domain occupied by the solid at time t > 0.

• dist (Ωs(0), ∂Ω) > ν > 0.

• h(t) ∈ R3 ∼ the position of the center of mass,
Q(t) ∈ SO3(R) ∼ the orthogonal matrix giving the orientation of
the solid,
ω(t) ∈ R3 ∼ the angular velocity of the rigid body.

• Ωs(t) = h(t) + Q(t)y , y ∈ Ωs(0),

• Fluid domain: Ωf (t) = Ω \ Ωs(t) or Ωf (t) = R3 \ Ωs(t)



Governing equations:

• Fluid equation: Incompressible Navier-Stokes-Fourier equations:

For (t, x) ∈ (0,∞)× Ωf (t),

ρf (∂tu + u · ∇u)− divσ(u, π) = 0, div u = 0,

σ(u, π) = ν(∇u +∇u>)− πI3,
u(t, x) = h′(t) + ω(t)× (x − h(t)) x ∈ ∂Ωs(t),

mh′′(t) = −
∫
∂Ωs (t)

σ(u, p)n dγ,

Jω′(t) = (Jω)× ω −
∫
∂Ωs (t)

(x − h(t))× σ(u, p)n dγ,

+ initial data

In bounded domain u = 0 on ∂Ω.



Existence and uniqueness

∼ Serre(1987), Takahashi (02), Feireisl (03), Takahashi and Tucsnak(04),
Cumsille and Takahashi (08), Geissert et. al (13) and many more..

• Global existence of weak solutions.

• Global existence of strong solution in 2D.

• Local in time or global in time for small data in the 3D case.

• Similar results for bounded domain.



Large time behaviour : bounded domain

∼ Takahashi (04), Maity and Tucsnak (18)

• For initial data sufficiently small

‖u(t)‖Lq + |h′(t)|+ |ω(t)| . e−ηt ,

for some η > 0.

• q ∈ (4/3,∞) in 2D and q ∈ (5/3,∞) in 3D.

• h(t) remains away from the boundary, limt→∞ h(t) = h∗.

• We don’t know what is h∗.



Large time behaviour:2D unbounded
domain

∼ Ervedoza, Hillairet and Lacave (2014)

• Rigid body is a ball.

• For initial data sufficiently small

‖u(t)‖L2 → 0, |h′(t)| . 1

t
.

• Possible unbounded trajectory for the rigid ball. In fact, for the
linearized problem, both bounded and unbounded trajectories are
possible for the rigid ball, depending on the “mass:” (m − π)`0.



Our result: 3D unbounded domain and
rigid body is a ball

Theorem

If the initial datum is small enough in suitable norm then the position of
the center of the rigid ball converges to some h∗ ∈ R3 as time goes to
infinity.

∼ Dimension plays a role. Heuristically, L∞ norm of velocity, for initial
data in Lq, decays like ∼ t−n/2q.



Why we need rigid body to be a ball

• Reformulate the problem in a fixed domain, decay estimates for the
linearized problem and a suitable fixed point.

• Use the change of variable x → Q(t)x + h(t). More precisely,

v(t) = Q(t)>u(t,Q(t)x + h(t)),

`(t) = Q(t)>h(t), ω(t) = Q(t)>ω(t)



Transformed system: in (0,∞)× Ωf (0), Ωf (0) = R3 \ Ωs(0) :

∂tv − divσ(v , π) = −(v − `) · ∇v + (ω × y) · ∇v , div v = 0,

v(t, y) = `(t) + ω(t)× y , y ∈ ∂Ωs(0),

m`′(t) = −
∫
∂Ωs (0)

σ(v , π)n dγ,

Jω′(t) = −
∫
∂Ωs (0)

y × σ(v , π)n dγ,

+ initial data

∼ if the rigid body is not a ball, simple change of variable gives the
spatial unbounded term : (ω × y) · ∇u
∼ We need more complicated change of variable, which induces a lot of
nonlinear term.



Mild solutions

We set

V =

{
v in R3 \ B(0, 1)

`+ ω × y in B(0, 1).

and, for 1 < q <∞,

Xq =
{

Φ ∈ Lq(R3)3 | divΦ = 0 in R3,D(Φ) = 0 in B(0, 1)
}

Then we can rewrite the system

V ′(t) = AqV (t) + F (V ), V (0) = V0,

where Aq : D(Aq)→ Xq is the linear fluid-structure operator and F
nonlinear terms.

V (t) = TtV0 +

∫ t

0

Tt−sF (V (s))



Our result

• Existence and uniqueness: For v0 ∈ L3, div v0 = 0 satisfying
compatibility conditions and

‖v0‖L3 + |`0|+ |ω0| << 1,

the system admits a unique solution in C ([0,∞); L3 × R3 × R3).

• Decay estimates: Let q ∈ (1, 3/2), v0 ∈ Lq ∩ L3 with compatibility
conditions and same smallness assumption. Then

‖u(t)‖L∞ + |h′(t)|+ |ω(t)| . t−3/2q

=⇒ h(t) converges to h∗. We don’t know what is h∗.



Linear FSI system with arbitrary rigid body

∼ E - Fluid domain, O− rigid body.

∂tu − µ∆u +∇π = 0, divu = 0 (t > 0, x ∈ E ),

u = `+ ω × x (t > 0, x ∈ ∂O),

m ˙̀ +

∫
∂O

σ(u, π)ν ds = 0 (t > 0),

J ω̇ +

∫
∂O

x × σ(u, π)ν ds = 0, (t > 0),

u(0) = u0 (x ∈ E ),

`(0) = `0, ω(0) = ω0.

We rewrite the system as

d

dt
U = AqU, U(0) = U0.



Decay estimates for FSI semigroup

Theorem (SE, DM, MT)

• 1 < q 6 r <∞ or 1 < q <∞, r =∞. Then

‖TtU‖r 6 C (q, r)t−3/2(1/q−1/r)‖U‖q t > 0,U ∈ Xq.

• 1 < q 6 r 6 3. Then

‖∇TtU‖r ,E 6 C (q, r)t−3/2(1/q−1/r)−1/2‖U‖q t > 0,U ∈ Xq.

∼ The decay estimates are same as Stokes system in the exterior domain
(Iwashita, 1989).
∼ Tools: Two types of resolvent estimates and some cut-off arguments.



1st Resolvent estimate

Theorem

Let 1 < q <∞. Then

‖λ(λI− Aq)−1‖ 6 C , for λ ∈ Σθ, θ > π/2.

• For fluid (Stokes): Borchers and Sohr (1987).

• A2 is self adjoint =⇒ A2 is sectorial. (Takahashi and Tucsnak,
2004).

• A is sectorial on X2 ∩ Xq, q > 6. (Wang and Xin, 2011).

• in bounded domain, Aq is sectorial for any 1 < q <∞. (Maity and
Tucsnak, 18).

• Idea : Resolvent of FSI = Resolvent of Stokes + “other terms”



Small time decay estimates
• Consequence of the resolvent estimate:

‖Am
q Tt‖ . t−m for any m ∈ N.

• A priori estimate :
‖u‖2m,q + |`|+ |ω| . ‖Am

q (u, `, ω)‖Xq + ‖(u, `, ω)‖Xq

• N = 3[1/q − 1/r ]. Assume N is even. Then

‖u(t)‖N,q + |`(t)|+ |ω(t)| . ‖AN/2
q Tq

t (u0, `0)‖Xq + ‖Tq
t (u0, `0)‖Xq

. Cτ t
−N/2 ‖(u0, `0)‖Xq

(t ∈ (0, τ))

Similarly,

‖u(t)‖N+2,q + |`(t)| . Cτ t
−(N+2)/2 ‖(u0, `0)‖Xq

Sobolev embedding and interpolation gives,

‖TtU‖Xr . Cτ t
−3/2(1/q−1/r)‖U‖Xq , t ∈ (0, τ ].



2nd resolvent estimate and local decay
estimates

Let 1 < q <∞ and R >> 1.

Theorem

For λ ∈ Σθ and near 0,

|λ|−1/2‖(λI − Aq)−1F‖q,−2 . ‖F‖q,

for F = 0 in |x | > R and the norm is (1 + |x |2)−2F ∈ Lq.

⇓

‖TtU‖q,B(0,R) 6 C (q,R)(1 + t)−3/2‖U‖q,

for U = 0 for |x | > R.



Decay estimates of the linear FSI

Step 1. Extension of initial data: Let t > 1 and U0 ∈ RanT1 ∼ D(Am
q ).

Let ψ be a function in R3 such that

ψ = u0 in E , divψ = 0, ‖ψ‖2m,q . ‖U0‖D(Am
q ).

Step 2. Stokes system in R3 : We consider

∂tv0 −∆v0 = 0, divv0 = 0, v0(0) = ψ

we have
‖∇mv0(t)‖r . (1 + t)−3/2(1/q−1/r)−m/2



Step 3. Bogoviskii correction: Let φ be a cut off functions φ = 1 in
|x | 6 R − 2, and φ = 0 in |x | > R − 1.Let v1 is such that

divv1 = −∇φ · v0, suppv1 ⊂ {R − 2 6 |x | 6 R − 1}.

with
‖v1(t)‖m,q . (1 + t)−3/2q.

Step 4. Local decay estimates: We set v2 = u − (1− φ)v0 + v1. Then
v2, π, ` and ω satisfy

∂tv2 − µ∆v2 +∇π = f , div v2 = 0 (t > 0, x ∈ E ),

v2 = `+ ω × x (t > 0, x ∈ ∂O),

m ˙̀ +

∫
∂O

σ(v2, π)ν ds = 0 (t > 0),

J ω̇ +

∫
∂O

x × σ(v2, π)ν ds = 0 (t > 0),

v2(0, x) = ζ(x) (x ∈ E ),

`(0) = `0, ω(0) = ω0,



with f and ζ depending only on v0, v1 and compactly supported. This
gives

‖v2(t, ·)‖2m,q,BR
+ |`(t)|+ |ω(t)| . (1 + t)−3/2q.

Step 5. Estimate near spatial infinity: We take a cut off function χ = 1
in |x | > R and χ = 0 in |x | 6 R − 1. We take v3 such that

divv3 = divχu.

Next, we define v4 = χu − v3. And, v4 solves stokes system in R3.

‖u(t)‖r ,|x|>R . (1 + t)−3/2(1/q−1/r).



Proof of the main result.

We recall

V (t) = TtV0 +

∫ t

0

Tt−sF (V (s)), F = (v − `) · ∇v .

Step 1. Existence and uniqueness in X3– Fixed point argument: We
consider the space

CT =
{
t1/4V ∈ C ([0,T ];X6), t1/2V ∈ C ([0,T ];X∞)

min{1, t1/2}∇v ∈ C ([0,T ]; L3)
}

If ‖V0‖X3 is small then, then we have existence and uniqueness in C∞,
together with

‖V (t)‖Xp . t−3/2(1/3−1/p) p ∈ [3,∞].

This is not enough to conclude large time behaviour of the rigid body.



Large time behaviour

Step 2: Improved decay estimates: Take 1 < q < 3/2 and V0 ∈ X3 ∩ Xq.
Then

‖TtV0‖∞ . t−3/2q‖V0‖q
and ∥∥∥∥∫ t

0

Tt−sF (V (s))

∥∥∥∥
∞

. t−3/2q(‖V0‖q + ‖v0‖3).



Open questions

• determining the limit from initial data.

• Non-linear problem for rigid body of arbitrary shape.

• Control problem for unbounded domain.....



Happy Birthday Marius.
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