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» Results concerning non local parabolic equations are obtained in collabora-
tion with Matthieu Alfaro (université de Rouen) and Pierre Gabriel Université
de Paris-Saclay (site de Versailles), a work in progress:

Confining Integro-Differential Equations Originating from Evolutionary Bio-
logy: Ground States and Long Time Dynamics.
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Introduction

Consider a Banach space X, a subspace of L'(du), the space of integrable
functions on a measurable set 2 with respect to a positive measure dpu.

Recall that a linear Cy semigroup on X is a family of bounded operators
S(t) : X — X, fort = 0, such that

S0) =1, S(t+71)=850t)S(1), Yu e X, liI%S(t)u = U.
t—

Let (S(t))¢>0 be a linear Cy semigroup acting on X which preserves positi-
vity, that is
feXx, f=0 = St)f=0.

Our aim is to study the limit of S(t) f as t - +oo, for a given f > 0.



Introduction

» The family under study is a non local diffusion equation of the form

df=0Uxf—f)—W(x)=W())f in (0,00) X RN
(1) £(0,x)= fo(x) =0 in RV, folx) = 1.
[RN
where J € LY/(RV) N L?(RN) and W > 0 are such that
J =0, J J(x)dx =1, J(—x)=]J(x), |l}m Wi(x) = +o0,
RN X|—> o0

while W (u) is a nonlocal term defined by
W) = WD) i= (£t W)= | WO 2)dy,

This equation is considered in the study of replication-mutation mathema-
tical models in biology.



Introduction

» A classical approach is to study the spectrum o (L) of the generator L of
the semigroup, that is the operator L such that S(f) = exp(tL).

» For instance, one tries to show that 0 € o (L) and that there exists a non
trivial @ > 0 verifying Ly = 0.

» Then one tries to prove that L has a spectral gap: this means that there
exists wg > 0 verifying

o(L)\N{0} C{ze C; Re(z) < —wyp}.

» Finally one shows that S (t) fo converges to a multiple of @ provided f; = 0,
with a decay rate of order e %! for some a verifying 0 < a < wp. |



Doblin’s theorem %%

A very elegant result is due to Wolfgang Doblin (1915 — 1940), sent to the
French « Académie des Sciences » in February 1940 in a sealed document (num-
ber 11.688), which was unsealed and made public only in 2000.

» Consider a positive semigroup (S(t)):>o acting on the space L'(du) and
such that for f € L'(du) we have

M(S(t)f) =M(f),
where we denote by M (f) the total mass of f, that is

M(f) = | fau

Then we have



Doblin’s theorem

1 Doblin’s Theorem. Assume that there exists T > 0, a number 0 €
(0,1), and a function (or measure...) @ > 0 for which M(p) =1
and such that for all g € L' (du), verifying g = 0, one has

(2) S(T)g = 0M(g) .

Then for any f € L' (du) such that M(f) = 0 one has
(3) IS fllpaw = Q=D [ fllray

and also

4) 1SSl < € 1 g »

with

w = —log(1 — 0) .

T 0.




Doblin’s theorem %%

» Indeed, if M(f) = 0, write f = f™ — f~ with f* := max(0, +f), and set
Ai=M(f") = Jf*du = jf‘du-
» Then

IS(D) fllprawy = (ST = 0A@) + (0A@ — S(T)f )l 11 ap
(5) < IS f" = 0A@ || 11y + 10A@ = S(T)f ™ || 2y -

» But thanks to (2) we have S(T)f* — 0A@ > 0, and so
IS(T)f* = A gy = [ (S(TF= = 0A@) du = (1 = )2,

which, plugged into (5) and noting that 2A = || f{|}14,,), vields
IS(T) £l g <20 —0)A = (1—0) [ fllL1ay -



Doblin’s theorem %%

» Now the proof of the exponential decay of S(t) f when M (f) = 0, is straight-
forward: indeed since |S(t) f| < S(t)|f], we have

”S(t)f”Ll(du) = ||S(t)|f|”L1(dy) - ||f||L1(du)’

and so S(t) is a contractive semigroup in L' (du).

» Ift >0,writet =nT + 1 for T € [0,T) and n > 0 integer. Noting that
c1:= sup [[S(o)] =1,

0<o<T

and using the semigroup property of S(f) we get
IS fllpraw < IS fllpa < Q@ = O™ £l -
Finally, since n = (t — T)/T we deduce (4). |



Doblin’s theorem

» In particular, if we know that
Vit=0, SOe=9p, M@ =1 @=0,
then applying the above result to the function

f—M(f)o,

we conclude that for any initial data f > 0 we have
IS =MO @l <e " f =M@l -

» Despite this result being very elegant and powerful, the main issue is to
prove (2), even if one succeeds to prove the existence of the ground state
@. Indeed, in most interesting cases, one has @ > 0 in R" and it is not easy
to show a uniform lower bound for S(t) f when f > 0 and f # O. |



Nonlocal equation: ground state %‘%

» We study existence of a positive stationary solution (or ground state) for
the equation

6) WFf=0 U *f—f)—W(x)—W(F)f in (0,00) xRV
£(0,x) = fo(x) = 0in RY,  M(fy) =1.

» This amounts to find fy = 0 such that f, # 0 and

a?(J * fo — fo) = W(x) fo+ W(fo)fo =0,
so that setting A := W (fy) > 0, we end up looking for f, = 0 solution to

—O'Zf*f() + Wf() = (A — O'Z)f().



Nonlocal equation: ground state %%

» This is an eigenvalue problem: if @ > 0 is an eigenfunction and A; € R are
such that

@) kAW =N, | leealdx =1,
R
then setting
—1
A=A + 77, fo:=ap, with «:= (J cp(x)W(x)dx) A,
[RN

we have a stationary solution for (6), and M (f,) = 1 (actually one has also
A=A; +0?>0so that fy = 0).

» Hence we are going to prove that the linear operator associated to equation

(6) has a positive eigenfunction, associated to an eigenvalue A; > —o?.



Nonlocal equation: ground state

» Assume that J € L1 (RN) N L?(RYN) satisfies

®) J20, J6)=J(=x), | Jedx=1,
and
9) dJo >0, 3ro >0, J(x)=Jo on B(0,7ry).

» The potential W satisfies
(10) W eCRN), W=0, lim W(x) = +oo0,

|X|—>00
and

(]-]-) HX* € [RN) 3,VO > O! W(x*) = 0’ %1[W>0] & LI(B(X*,T()))



Nonlocal equation: ground state

» Then consider the operator (L,D (L)) acting on L?*(RN) defined by
Lu:=—-0c%J*%u+Wu, D(L):=L*1+W).
equation (6) can be written as

of =-Lf—o’f+W(N)f, [fO)=f=20, M) =1,

and the eigenvalue problem (7) reads

Ly =A@, lpll® =1,
and one would like to have @ > 0 and A; + o2 > 0.



Nonlocal equation: ground state

» Equation (1) has been widely studied, when instead of the linear non local
diffusion o®(J * f — f) one has a diffusion given for instance by —(—A)*
for 0 < s < 1, or in some special cases of J and W (for instance M. Alfaro,
J. Coville, R. Burger, F. Li, X. Wang, G. Legendre).

» For a diffusion equation like

o0uf =Af — (IxI* = IxI°)f
one can show easily that there exists a ground state @ > 0 and A; € R such
that

—A@ + (Ix]* = [x[)) @ = A, .
More generally the existence of a ground state for equations such as
—AQp + W@ =A@
has been widely studied (see M. Reed & B. Simon, L.A. Takhtajan).



Nonlocal equation: ground state

2 Theorem. There exists @ € Co(RN) N L°(1+ W) and A, € R, an
eigenvalue of multiplicity one, such that

—0Jxp+Wo = A0,
and moreover

ol W ATPRITNS,
W(X) — Al |

—0% <A <0, Vx €RY, 0<qpx) <



Nonlocal equation: ground state

» Define

E(u) := (Lulu) = —o? JRN(J * u)(x)u(x)dx + » W(x)u®(x)dx.

and the manifold
S = {u EL>(1+W); J u?(x)dx = 1}.
RN

We want to show that
A1 = inf E(u)

ues

is achieved for some @ € S such that @ > 0.

» The difficulty here is that we do not have any compactness in the imbedding
L*(1 + W) C L*(RY).



Nonlocal equation: ground state %%

» One shows first that there exists u € S such that E(u) < 0 and thus A; < O.
(This is the crucial step...).

» Then one verifies that if u,, — u in L?(1 + W) one has
02J (J % uy)un,dx - o> | (J*u)udx.
RN RN

This is due to the fact that on the one hand for x € RN we have K(x — ) €
L?(RYN) and thus K * u,(x) - K * u(x), and on the other hand u, €
L%(1 +W).

» Next observe that E(|u|) < E(u), so that if
Qn €S satisfies Al <E(@pn) <A1 + %,

we can assume that @,, > 0.



Nonlocal equation: ground state %%

» Moreover since
JW(x)(pn(x)de = E(py) + 0° J(J ¥ Qu)@pdx <A1 +1+ 02,
assuming that @, — @ in L>(1 + W)
0 < JW(X)CPn(X)ZdX = E(n) +0° J(J * @n)Pn — AL +0° J(J * @)@dx,
and by Fatou’s lemma
JW(x)m(x)de <A +0° J(J * @)pdx <A, + o2,

Since A; < 0, this implies that ¢ % 0, and hence A; + o2 > 0.



Nonlocal equation: ground state %%

» Now the same inequality shows that
E(p) <A;  and obviously J @(x)?dx < 1.
RN

Therefore, if 0 := ||@||;. < 1, upon considering @ := @ /0, we would get
QAQI e S, A < E((’]\D‘) = Q_ZE(QD) < 9_22\1 < A,

since A; < 0. This means that we must have ||@]||;- = 1 and @ € S while
E(@) = Ay.

» Finally since

_ ok
W — A

and J * @ € Cy(RY), we infer that € Cy(RN). O

(12)



Nonlocal equation: ground state

» In order to prove the positivity of @, one may use (12), but in order to show
the simplicity of A; we need a strong maximum principle for the operator
L.

3 Lemma. Letl <p<oandf € LFRN).Iff>0and f #0 is
given and u € LP (RN) solves
Lu+Au=f,

for some A > o2, thenu > 0, and if u € Co(RY) we have u > 0.

» When p < oo, write
o’Jxu +W+ANu=f+0o’J*ku" =0
and then multiply by (u™)?"11,.0] to get

Wx)+A—-—0c?)|lu (x)Pdx<0 = u =0.
Jou )



Nonlocal equation: ground state %%

» When p = o, denote

m = essinf u(x).
x€ERN

Since J = 0, we have
o° J J(x = y)u(y)dy = mo? JJ(x —y)dy = mo?,
RN

so that
W(x)+ANDu=f+0c’°]J*u=o’m.

» If m < 0, consider a sequence (x,), such that u(x,) — m with m <
U(xni1) < ulxy) <0, and

_1 ’
< — S — —
0<u(x, —m=< o\ (A —o0°)m.



Nonlocal equation: ground state

» One would get
0<—W(x)ulx,) <A(ulx,) —m) + (A —oc®)m < %(2\ —o®)m < 0.

Consequently one must have m > 0, thatis u > 0 a.e. ]



Nonlocal equation: ground state %%

» In order to prove @ > 0 note that if A > o2 and f = (A1 + A)@, we have
f>=0and f #0

Lp+Ap=f=0

therefore @ > 0, thanks to the previous lemma.

» Next one shows:
|4 Lemma. The eigenvalue A, is simple.

Proof.
» Otherwise there would exist v # 0 such that v* # 0 and Lv = Av.

» In particular Ay < E(Jv|) < E(v) = Ay, and thus L |v| = A; |v].



Nonlocal equation: ground state

» Therefore Lv™ = A;v™ and for A > 0% by Lemma 3 we have
LvT+AvE = (A +AM)vT >0 — v* > 0in RY.

Since (v |v~) = 0, this is a contradiction. [ |



Spectral gap

» The eigenfunction @ being found with a simple eigenvalue A; < 0, we define
(13) Sp:= {u eL’(1+W); (ulp) =0and J lu(x)|>dx = 1},
RN

and

(14) A> = inf E(u).

UES)

» Then we have

5 Lemma. We have either A, = 0 or there exists € Sy such that
A1 <A =E(yp) <0.



Spectral gap

Indeed, if A» < 0, following the same arguments as in the proof of Theorem
2, one shows that A, is achieved for some @ € S.

Now, since ¢ % 0, and (@ |y) = 0, we have ¢~ % 0, and
Ao = E() = W) +Ey0) +207 | | 7009 (x = 3w~ (x)dxdy.
However E(p*) > A, ||@*]|%, since ¢* cannot be a multiple of @, and
E(w™) + E(w) > Ao |2 + A llw™ 12 = Ac lwll? = As
Also clearly
|| g0t = 3w dxdy = o

and so A» > Aj. N



Spectral gap in the general case %%

» Since (Av|v) < 0, the semigroup S4(t) := et is contractive in L?(RN)
1Sa(E) |22 < 1.
» In what follows let 1 < p < . Recall (cf. the book One parameter semi-

groups by K.J. Engel & R. Nagel, chapter 4, § 2) that the growth bound of S
is defined as being

wo(A) = inf{w ER;AM >0, VE =0, |Sa(t)|lzpogr < Me“’t},
and the spectral bound of A (which is self-adjoint in L?(RY)) is
S(A) := sup {Re()\) P A E O'(A)} = sup {2\ C A E O'(A)}.

» Thus in our case we have wg(A) = s(A) = 0.



Spectral gap in the general case %%

» We wish to show that there exists a > 0 such that o (A) \ {O} C (—o0,—al,
or

wWo(Ajpr) = S(Ajpr) < —a.
» To this end we shall use the notion of essential growth bound, defined by
Wess (A) 1= inf{w €ER; AM >0, VE= 0, [|Sa(D)|legs < Me“’t},
where the essential norm of a bounded operator B is defined by
|Blless :=inf {IB = Tllppmrs ; T LP(RN) — LP(RY) is compact] .
» Clearly wess(A) < wo(A). One says that S, is quasi-compact if wegs(A) < 0,

and the main interest of this notion is the following result (Corollary 2.11,
chapitre 4, § 2 of the above book by Engel & Nagel)



Spectral gap in the general case %%

6 Theorem. If w > wess(A) then
o (A) N {A € C; Re(d) = wl.

is at most a finite number of eigenvalues of A, each having a finite
multiplicity.

» Inour case, A is self-adjoint (in L?(RY)) and we show that wegs (A) < 0. Then
we fix 0 < a < —wess(A) in order to obtain a decay rate of order e %! for
Sa(t) in the space @*.

» To show that wess(A) < 0, we split A as the sum of two operators Ag and B

A= Ay + B, Aou =AM u—Wu, D(Ap) :=D(L), Bu = 0°J * u.



Spectral gap in the general case %‘%

» We have Sy, (t)ug = et™ "Wy and
||SA0(t)||Lp_>Lp =< eAlts ”BllLP—»LP < 0-2-

» Writing equation (17) in two forms

dv dv : _
gr ~Aov+Buand  —o =Bu+Agy,  with v(0) = v,

and then considering the mild solution of each of these forms we obtain

v(t) = SAO(t)Uo + I; SAO(t — T)Bv(T)dT

= Sp(t)vy + L: Sp(t — T)Apv(T)dT,

one obtains the Duhamel formula



Spectral gap in the general case %%

Sa(t) = SAO(t) + Jot SAO(t — T)BSs(T)dT
= Sp(t) + J; Sp(t — T)ApSa(T)dT.

» Since [|Sa,(t)]|;,.;» < eV and A; < 0, using the first equality, if we show
that the operator R; defined by

t t
Riu = J Sa,(t = T)BSA(T)udt = o’ J Sa,(t —T)J * Sa(T)udt
0 0
is compact from L” — L7, we may deduce that wess(A) < 0.

» First we show that for T > 0 fixed the operator u — J * S5 (T)u is compact.
(Use the Kolmogorov-M. Riesz-Fréchet characterization of compact sets in
LP).



Spectral gap in the general case

» Then one shows that for € > 0 the operator
t
u - J SAO(t —T)J] k Sa(T)udT
&
is compact, and then we pass to the limit € — 0.

» Finally we deduce

7 Theorem. There existco > 0 and a > 0 such that uy € L (RYN)

1S4 (B) o — (U0l @)@l < coe™ [lug — (Uol @)@l -

» The same result can be proved in the space Cy(RY) and the space of boun-
ded measures 772 (RY). L



Linear nonlocal equation: convergence %

» We want to study the convergence of positive solutions of the nonlocal
equation

(15) du=0o*(J*xu—u)— (W) -Wu)u in (0,00) XRY
u(0,x) = ug(x) =0 in RN,  M(ug) = 1.

where J € LY (RV) N L?(RY) and W satisfy
J =0, J(x)dx =1, J(—x)=](x), |l}m W(x) = + o9,
RN x|—>o00

while W (u) is a nonlocal term given by

W) 1= W(t) i= (ult, ), W) i= | W, »)dy.



Linear nonlocal equation: convergence

» We show first a convergence result for the linear equation, upon dropping
the term W (u)u and setting

(16) Av:= —Lv+ Av for v € D(A) := D(L), v(t):=eMt0)ty ()
and considering the equation

;v=Av=—Lv+ A v in (0,00) X RN
(17) B . N
v(0,x) = upg(x) in RY.

» Here we have A@p = 0, and for v € D(L) N @+ we know that
(Lvlv) = A2 |Jv]I?,
and thus
(Aviv) < (A1 = Az) [lv]I°.



Linear nonlocal equation: convergence %%

» Since A; — A» < 0, we conclude easily that for any ug € @+ the solution
v(t) of (17) converges to zero, and more precisely we have

leuo|| = ISa®uoll = (D)l < e =2t |jayg]].

» Consequently for any uy € L?(RY) we have

—A2)t

1S4 (E)uo — (uol@) @l < e luo — (uol @)@l

» The same result can be established in the spaces L (RY) for 1 < p < oo, as
well as in Cy(RY) and in the space of bounded measures 772 (R"). N



Nonlinear nonlocal equation

» Now we turn to the study of the convergence of positive solutions of the
nonlinear nonlocal equation

(18) at”l/L:()'Z(J*u—u)_(W(X)—W(u))u in (O,OO)XRN
w(0,x) = up(x) =0 in RN,  M(up) = 1.

where

W) :=Wu(t)) := (u(t,-),w) := JRN W) u(t, y)dy.

» Recall that we have set
(19) Av:= —Lv + A;v for v € D(A) := D(L), v(t):= ety (¢)

and that S (t) := e!4 is the semigroup generated by A.



Nonlinear nonlocal equation %

» One shows the following

8 Lemma. Assume that
uy > 0, (1+ W)uy € LY(RYN), M(up) = 1.
Then the solution of (18) is given by

_ Sa(Buo
W) = o SaDug)”




Nonlinear nonlocal equation %%

» We begin by showing that

%M(SA(t)uo) = M(ASA(t)ug) = (A1 + )M (Sa(t)ug) — M(WSA(t)uo).

» Next, using the above calculation we have

:i Sauo _  ASa(Dug _M(ASA(t)uO)u(t)
dt M(Sa(t)ug) M(Sa(t)ug)  M(Ss(t)uo) '

= Au(t) — (A1 + o>)u(t) + M(Wu(t))u(t)
= —Lu(t) — o?u(t) + Wu(t))u(t)
=oc’(Jkxu—1u)—Wu+Wwuu.

atu




Nonlinear nonlocal equation

» We can now state

9 Theorem. Set@;:= @/M(@). Then there exists a > 0 such that
for any ug = 0 and M(uy) = 1, for a constant c(ugy) depending
on ug, the solution of (18) satisfies

lu(t) — @1l < c(up)e .

» The result can also be proved for the norms in L?(RY) for 1 < p < o, as
well as in Cy(RY) and 272 (RM).



Nonlinear nonlocal equation

» It is sufficient to write z(t) := u(t) — @ as
M(@)Sa(t)uog — M(Sa(t)uo)@
M(Sa(t)uo)M ()
_ (uol@)M(@)Sa(t)uog — M(Sa(t)uo) (uol @)@
a M(Sa(t)uo)M (@) (uol@)
M ((uol®@)@ — Sa(t)up) Sa(t)uo + M(Sa(t)ug) (Sa(t)uo — (uol@)@)
a M(Sa(t)ue)M (@) (uo|p)

z(t) =

» This yields
1Sa(@)uo — (Uol @)@l 1S4 (@) uollp
M(@)(uol) M(Sa(t)up)
ISa(t)uo — (Uol@) P11
M(@)(uol@)

[z(E) ][ <




