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▶ Results concerning non local parabolic equations are obtained in collabora-
tion withMatthieu Alfaro (université de Rouen) and Pierre Gabriel Université
de Paris–Saclay (site de Versailles), a work in progress:
Confining Integro-Differential Equations Originating from Evolutionary Bio-
logy: Ground States and Long Time Dynamics.
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6Introduction

▶ Consider a Banach space 𝑋, a subspace of 𝐿1(𝑑𝜇), the space of integrable
functions on a measurable set 𝛺 with respect to a positive measure 𝑑𝜇.

▶ Recall that a linear 𝐶0 semigroup on 𝑋 is a family of bounded operators
𝑆(𝑡) : 𝑋 ⟶ 𝑋, for 𝑡 ≥ 0, such that

𝑆(0) = 𝐼, 𝑆(𝑡 + 𝜏) = 𝑆(𝑡)𝑆(𝜏), ∀𝑢 ∈ 𝑋, lim
𝑡→0

𝑆(𝑡)𝑢 = 𝑢.

▶ Let (𝑆(𝑡))𝑡≥0 be a linear 𝐶0 semigroup acting on 𝑋 which preserves positi-
vity, that is

𝑓 ∈ 𝑋, 𝑓 ≥ 0 ⟹ 𝑆(𝑡)𝑓 ≥ 0.

▶ Our aim is to study the limit of 𝑆(𝑡)𝑓 as 𝑡 → +∞, for a given 𝑓 ≥ 0.
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▶ The family under study is a non local diffusion equation of the form

(1)
⎧⎪
⎨⎪⎩

∂𝑡 𝑓= 𝜎2(𝐽 ∗ 𝑓−𝑓) − (𝑊(𝑥) −𝑊(𝑓))𝑓 in (0,∞) ×ℝ𝑁

𝑓(0,𝑥)= 𝑓0(𝑥) ≥ 0 in ℝ𝑁, ∫
ℝ𝑁

𝑓0(𝑥) = 1.

where 𝐽 ∈ 𝐿1(ℝ𝑁) ∩ 𝐿2(ℝ𝑁) and 𝑊 ≥ 0 are such that

𝐽 ≥ 0, ∫
ℝ𝑁

𝐽(𝑥)𝑑𝑥 = 1, 𝐽(−𝑥) = 𝐽(𝑥), lim
|𝑥|→∞

𝑊(𝑥) = +∞,

while 𝑊(𝑢) is a nonlocal term defined by

𝑊(𝑓) := 𝑊(𝑓(𝑡)) := ⟨𝑓(𝑡, ⋅),𝑊⟩ := ∫
ℝ𝑁

𝑊(𝑦)𝑓(𝑡,𝑦)𝑑𝑦.

This equation is considered in the study of replication-mutation mathema-
tical models in biology.
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▶ A classical approach is to study the spectrum 𝜎(𝐿) of the generator 𝐿 of
the semigroup, that is the operator 𝐿 such that 𝑆(𝑡) = exp(𝑡𝐿).

▶ For instance, one tries to show that 0 ∈ 𝜎(𝐿) and that there exists a non
trivial 𝜑 ≥ 0 verifying 𝐿𝜑 = 0.

▶ Then one tries to prove that 𝐿 has a spectral gap: this means that there
exists 𝜔0 > 0 verifying

𝜎(𝐿) ∖ {0} ⊂ {𝑧 ∈ ℂ ; Re(𝑧) < −𝜔0} .

▶ Finally one shows that 𝑆(𝑡)𝑓0 converges to a multiple of𝜑 provided 𝑓0 ≥ 0,
with a decay rate of order e−𝑎𝑡 for some 𝑎 verifying 0 < 𝑎 ≤ 𝜔0. ■
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A very elegant result is due to Wolfgang Döblin (1915 — 1940), sent to the
French «Académie des Sciences » in February 1940 in a sealed document (num-
ber 11.688), which was unsealed and made public only in 2000.

▶ Consider a positive semigroup (𝑆(𝑡))𝑡≥0 acting on the space 𝐿1(𝑑𝜇) and
such that for 𝑓 ∈ 𝐿1(𝑑𝜇) we have

𝑀(𝑆(𝑡)𝑓) = 𝑀(𝑓),

where we denote by 𝑀(𝑓) the total mass of 𝑓, that is

𝑀(𝑓) := ∫𝑓𝑑𝜇.

Then we have
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1 Döblin’s Theorem. Assume that there exists 𝑇 > 0, a number 𝜃 ∈
(0, 1), and a function (or measure…) 𝜑 ≥ 0 for which 𝑀(𝜑) = 1
and such that for all 𝑔 ∈ 𝐿1(𝑑𝜇), verifying 𝑔 ≥ 0, one has

(2) 𝑆(𝑇)𝑔 ≥ 𝜃𝑀(𝑔)𝜑.

Then for any 𝑓 ∈ 𝐿1(𝑑𝜇) such that 𝑀(𝑓) = 0 one has

(3) ‖𝑆(𝑇)𝑓‖𝐿1(𝑑𝜇) ≤ (1− 𝜃)‖𝑓‖𝐿1(𝑑𝜇) ,

and also

(4) ‖𝑆(𝑡)𝑓‖𝐿1(𝑑𝜇) ≤ e−𝜔𝑡 ‖𝑓‖𝐿1(𝑑𝜇) ,

with

𝜔 := −log(1 − 𝜃)
𝑇 > 0.
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▶ Indeed, if 𝑀(𝑓) = 0, write 𝑓 = 𝑓+ −𝑓− with 𝑓± := max(0,±𝑓), and set

𝜆 := 𝑀(𝑓+) = ∫𝑓+𝑑𝜇 = ∫𝑓−𝑑𝜇.

▶ Then

‖𝑆(𝑇)𝑓‖𝐿1(𝑑𝜇) = ‖(𝑆(𝑇)𝑓+ −𝜃𝜆𝜑)+ (𝜃𝜆𝜑−𝑆(𝑇)𝑓−)‖𝐿1(𝑑𝜇)

≤ ‖𝑆(𝑇)𝑓+ −𝜃𝜆𝜑‖𝐿1(𝑑𝜇) + ‖𝜃𝜆𝜑−𝑆(𝑇)𝑓−‖𝐿1(𝑑𝜇) .(5)

▶ But thanks to (2) we have 𝑆(𝑇)𝑓± −𝜃𝜆𝜑 ≥ 0, and so

‖𝑆(𝑇)𝑓± −𝜃𝜆𝜑‖𝐿1(𝑑𝜇) = ∫(𝑆(𝑇)𝑓± −𝜃𝜆𝜑)𝑑𝜇 = (1− 𝜃)𝜆,

which, plugged into (5) and noting that 2𝜆 = ‖𝑓‖𝐿1(𝑑𝜇), yields
‖𝑆(𝑇)𝑓‖𝐿1(𝑑𝜇) ≤ 2(1 − 𝜃)𝜆 = (1 − 𝜃)‖𝑓‖𝐿1(𝑑𝜇) .
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▶ Now the proof of the exponential decay of 𝑆(𝑡)𝑓when𝑀(𝑓) = 0, is straight-
forward: indeed since |𝑆(𝑡)𝑓| ≤ 𝑆(𝑡)|𝑓|, we have

‖𝑆(𝑡)𝑓‖𝐿1(𝑑𝜇) ≤ ‖𝑆(𝑡)|𝑓|‖𝐿1(𝑑𝜇) = ‖𝑓‖𝐿1(𝑑𝜇) ,

and so 𝑆(𝑡) is a contractive semigroup in 𝐿1(𝑑𝜇).

▶ If 𝑡 > 0, write 𝑡 = 𝑛𝑇+𝜏 for 𝜏 ∈ [0,𝑇) and 𝑛 ≥ 0 integer. Noting that
𝑐1 := sup

0≤𝜎≤𝑇
‖𝑆(𝜎)‖ = 1,

and using the semigroup property of 𝑆(𝑡) we get

‖𝑆(𝑡)𝑓‖𝐿1(𝑑𝜇) ≤ 𝑐1 ‖𝑆(𝑇)𝑛𝑓‖𝐿1(𝑑𝜇) ≤ (1− 𝜃)𝑛 ‖𝑓‖𝐿1(𝑑𝜇) .

Finally, since 𝑛 = (𝑡 − 𝜏)/𝑇 we deduce (4). ■
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▶ In particular, if we know that
∀𝑡 ≥ 0, 𝑆(𝑡)𝜑 = 𝜑, 𝑀(𝜑) = 1, 𝜑 ≥ 0,

then applying the above result to the function
𝑓−𝑀(𝑓)𝜑,

we conclude that for any initial data 𝑓 ≥ 0 we have

‖𝑆(𝑡)𝑓 −𝑀(𝑓)𝜑‖𝐿1(𝑑𝜇) ≤ e−𝜔𝑡 ‖𝑓−𝑀(𝑓)𝜑‖𝐿1(𝑑𝜇) .

▶ Despite this result being very elegant and powerful, the main issue is to
prove (2), even if one succeeds to prove the existence of the ground state
𝜑. Indeed, in most interesting cases, one has 𝜑 > 0 in ℝ𝑁 and it is not easy
to show a uniform lower bound for 𝑆(𝑡)𝑓 when 𝑓 ≥ 0 and 𝑓 ≢ 0. ■
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▶ We study existence of a positive stationary solution (or ground state) for
the equation

(6) {
∂𝑡 𝑓= 𝜎2(𝐽 ∗ 𝑓−𝑓) − (𝑊(𝑥) −𝑊(𝑓))𝑓 in (0,∞) ×ℝ𝑁

𝑓(0,𝑥)= 𝑓0(𝑥) ≥ 0 in ℝ𝑁, 𝑀(𝑓0) = 1.

▶ This amounts to find 𝑓0 ≥ 0 such that 𝑓0 ≢ 0 and

𝜎2(𝐽 ∗ 𝑓0 −𝑓0) −𝑊(𝑥)𝑓0 +𝑊(𝑓0)𝑓0 = 0,

so that setting 𝜆 := 𝑊(𝑓0) > 0, we end up looking for 𝑓0 ≥ 0 solution to

−𝜎2𝐽 ∗ 𝑓0 +𝑊𝑓0 = (𝜆−𝜎2)𝑓0.
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▶ This is an eigenvalue problem: if 𝜑 ≥ 0 is an eigenfunction and 𝜆1 ∈ ℝ are
such that

(7) −𝜎2𝐽 ∗𝜑+𝑊𝜑 = 𝜆1𝜑, ∫
ℝ𝑁

|𝜑(𝑥)|2 𝑑𝑥 = 1,

then setting

𝜆 := 𝜆1 +𝜎2, 𝑓0 := 𝛼𝜑, with 𝛼 := (∫
ℝ𝑁

𝜑(𝑥)𝑊(𝑥)𝑑𝑥)
−1

𝜆,

we have a stationary solution for (6), and 𝑀(𝑓0) = 1 (actually one has also
𝜆 = 𝜆1 +𝜎2 > 0 so that 𝑓0 ≥ 0).

▶ Hence we are going to prove that the linear operator associated to equation
(6) has a positive eigenfunction, associated to an eigenvalue 𝜆1 > −𝜎2.
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▶ Assume that 𝐽 ∈ 𝐿1(ℝ𝑁) ∩ 𝐿2(ℝ𝑁) satisfies

(8) 𝐽 ≥ 0, 𝐽(𝑥) = 𝐽(−𝑥), ∫
ℝ𝑁

𝐽(𝑥)𝑑𝑥 = 1,

and

(9) ∃𝐽0 > 0, ∃𝑟0 > 0, 𝐽(𝑥) ≥ 𝐽0 on 𝐵(0,𝑟0).

▶ The potential 𝑊 satisfies

(10) 𝑊 ∈ 𝐶(ℝ𝑁), 𝑊 ≥ 0, lim
|𝑥|→∞

𝑊(𝑥) = +∞,

and

(11) ∃𝑥∗ ∈ ℝ𝑁, ∃𝑟0 > 0, 𝑊(𝑥∗) = 0, 1
𝑊1[𝑊>0] ∉ 𝐿1(𝐵(𝑥∗, 𝑟0)).
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▶ Then consider the operator (𝐿,𝐷(𝐿)) acting on 𝐿2(ℝ𝑁) defined by

𝐿𝑢 := −𝜎2𝐽 ∗𝑢+𝑊𝑢, 𝐷(𝐿) := 𝐿2(1 +𝑊).
equation (6) can be written as

∂𝑡𝑓 = −𝐿𝑓−𝜎2𝑓+𝑊(𝑓)𝑓, 𝑓(0) = 𝑓0 ≥ 0, 𝑀(𝑓0) = 1,

and the eigenvalue problem (7) reads

𝐿𝜑 = 𝜆1𝜑, ‖𝜑‖2 = 1,

and one would like to have 𝜑 ≥ 0 and 𝜆1 +𝜎2 > 0.
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▶ Equation (1) has been widely studied, when instead of the linear non local
diffusion 𝜎2(𝐽 ∗ 𝑓 − 𝑓) one has a diffusion given for instance by −(−𝛥)𝑠

for 0 < 𝑠 ≤ 1, or in some special cases of 𝐽 and 𝑊 (for instance M. Alfaro,
J. Coville, R. Bürger, F. Li, X. Wang, G. Legendre).

▶ For a diffusion equation like

∂𝑡𝑓 = 𝛥𝑓− (|𝑥|4 − |𝑥|2)𝑓
one can show easily that there exists a ground state 𝜑 > 0 and 𝜆1 ∈ ℝ such
that

−𝛥𝜑+ (|𝑥|4 − |𝑥|2)𝜑 = 𝜆1𝜑.
More generally the existence of a ground state for equations such as

−𝛥𝜑+𝑊𝜑 = 𝜆1𝜑
has been widely studied (see M. Reed & B. Simon, L.A. Takhtajan).
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2 Theorem. There exists 𝜑 ∈ 𝐶0(ℝ𝑁)∩𝐿2(1+𝑊) and 𝜆1 ∈ ℝ, an
eigenvalue of multiplicity one, such that

−𝜎2𝐽 ∗𝜑+𝑊𝜑 = 𝜆1𝜑,

and moreover

−𝜎2 < 𝜆1 < 0, ∀𝑥 ∈ ℝ𝑁, 0 < 𝜑(𝑥) ≤
𝜎2 ‖𝐽‖𝐿2(ℝ𝑁)

𝑊(𝑥) − 𝜆1
.
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▶ Define

𝐸(𝑢) := (𝐿𝑢|𝑢) = −𝜎2 ∫
ℝ𝑁

(𝐽 ∗ 𝑢)(𝑥)𝑢(𝑥)𝑑𝑥+∫
ℝ𝑁

𝑊(𝑥)𝑢2(𝑥)𝑑𝑥.

and the manifold

𝑆 := {𝑢 ∈ 𝐿2(1 +𝑊) ; ∫
ℝ𝑁

𝑢2(𝑥)𝑑𝑥 = 1} .

We want to show that
𝜆1 := inf

𝑢∈𝑆
𝐸(𝑢)

is achieved for some 𝜑 ∈ 𝑆 such that 𝜑 ≥ 0.

▶ The difficulty here is that we do not have any compactness in the imbedding
𝐿2(1 +𝑊) ⊂ 𝐿2(ℝ𝑁).
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▶ One shows first that there exists 𝑢 ∈ 𝑆 such that 𝐸(𝑢) < 0 and thus 𝝀𝟏 < 𝟎.
(This is the crucial step…).

▶ Then one verifies that if 𝑢𝑛 ⇀ 𝑢 in 𝐿2(1 +𝑊) one has

𝜎2 ∫
ℝ𝑁

(𝐽 ∗ 𝑢𝑛)𝑢𝑛𝑑𝑥 → 𝜎2 ∫
ℝ𝑁

(𝐽 ∗ 𝑢)𝑢𝑑𝑥.

This is due to the fact that on the one hand for 𝑥 ∈ ℝ𝑁 we have 𝐾(𝑥−⋅) ∈
𝐿2(ℝ𝑁) and thus 𝐾 ∗ 𝑢𝑛(𝑥) → 𝐾 ∗ 𝑢(𝑥), and on the other hand 𝑢𝑛 ∈
𝐿2(1 +𝑊).

▶ Next observe that 𝐸(|𝑢|) ≤ 𝐸(𝑢), so that if

𝜑𝑛 ∈ 𝑆 satisfies 𝜆1 ≤ 𝐸(𝜑𝑛) ≤ 𝜆1 +
1
𝑛,

we can assume that 𝜑𝑛 ≥ 0.
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▶ Moreover since

∫𝑊(𝑥)𝜑𝑛(𝑥)2𝑑𝑥 = 𝐸(𝜑𝑛) +𝜎2 ∫(𝐽 ∗𝜑𝑛)𝜑𝑛𝑑𝑥 ≤ 𝜆1 + 1+𝜎2,

assuming that 𝜑𝑛 ⇀ 𝜑 in 𝐿2(1 +𝑊)

0 ≤ ∫𝑊(𝑥)𝜑𝑛(𝑥)2𝑑𝑥 = 𝐸(𝜑𝑛) +𝜎2 ∫(𝐽 ∗𝜑𝑛)𝜑𝑛 → 𝜆1 +𝜎2 ∫(𝐽 ∗𝜑)𝜑𝑑𝑥,

and by Fatou’s lemma

∫𝑊(𝑥)𝜑(𝑥)2𝑑𝑥 ≤ 𝜆1 +𝜎2 ∫(𝐽 ∗𝜑)𝜑𝑑𝑥 ≤ 𝜆1 +𝜎2.

Since 𝝀𝟏 < 𝟎, this implies that 𝝋 ≢ 𝟎, and hence 𝝀𝟏 +𝝈𝟐 > 𝟎.
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▶ Now the same inequality shows that

𝐸(𝜑) ≤ 𝜆1 and obviously ∫
ℝ𝑁

𝜑(𝑥)2𝑑𝑥 ≤ 1.

Therefore, if 𝜃 := ‖𝜑‖𝐿2 < 1, upon considering �̃� := 𝜑/𝜃, we would get

�̃� ∈ 𝑆, 𝜆1 ≤ 𝐸(�̃�) = 𝜃−2𝐸(𝜑) ≤ 𝜃−2𝜆1 < 𝜆1,

since 𝜆1 < 0. This means that we must have ‖𝜑‖𝐿2 = 1 and 𝜑 ∈ 𝑆 while
𝐸(𝜑) = 𝜆1.

▶ Finally since

(12) 𝜑 = 𝜎2𝐽 ∗𝜑
𝑊−𝜆1

and 𝐽 ∗𝜑 ∈ 𝐶0(ℝ𝑁), we infer that 𝜑 ∈ 𝐶0(ℝ𝑁). □
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▶ In order to prove the positivity of 𝜑, one may use (12), but in order to show
the simplicity of 𝜆1 we need a strong maximum principle for the operator
𝐿.

3 Lemma. Let 1 ≤ 𝑝 ≤ ∞ and 𝑓 ∈ 𝐿𝑝(ℝ𝑁). If 𝑓 ≥ 0 and 𝑓 ≢ 0 is
given and 𝑢 ∈ 𝐿𝑝(ℝ𝑁) solves

𝐿𝑢+ 𝜆𝑢 = 𝑓,

for some 𝜆 > 𝜎2, then 𝑢 ≥ 0, and if 𝑢 ∈ 𝐶0(ℝ𝑁) we have 𝑢 > 0.

▶ When 𝑝 < ∞, write
𝜎2𝐽 ∗𝑢− + (𝑊+𝜆)𝑢 = 𝑓+𝜎2𝐽 ∗𝑢+ ≥ 0

and then multiply by (𝑢−)𝑝−11[𝑢<0] to get

∫
ℝ𝑁

(𝑊(𝑥) + 𝜆−𝜎2) |𝑢−(𝑥)|𝑝 𝑑𝑥 ≤ 0 ⟹ 𝑢− ≡ 0.
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▶ When 𝑝 = ∞, denote
𝑚 := ess inf

𝑥∈ℝ𝑁
𝑢(𝑥).

Since 𝐽 ≥ 0, we have

𝜎2 ∫
ℝ𝑁

𝐽(𝑥−𝑦)𝑢(𝑦)𝑑𝑦 ≥ 𝑚𝜎2 ∫𝐽(𝑥−𝑦)𝑑𝑦 = 𝑚𝜎2,

so that

(𝑊(𝑥) + 𝜆)𝑢 = 𝑓+𝜎2𝐽 ∗𝑢 ≥ 𝜎2𝑚.

▶ If 𝑚 < 0, consider a sequence (𝑥𝑛)𝑛 such that 𝑢(𝑥𝑛) → 𝑚 with 𝑚 ≤
𝑢(𝑥𝑛+1) ≤ 𝑢(𝑥𝑛) < 0, and

0 ≤ 𝑢(𝑥𝑛) −𝑚 ≤ −1
2𝜆 (𝜆 −𝜎2)𝑚.



26Nonlocal equation: ground state

▶ One would get

0 ≤ −𝑊(𝑥𝑛)𝑢(𝑥𝑛) ≤ 𝜆(𝑢(𝑥𝑛) −𝑚)+ (𝜆−𝜎2)𝑚 ≤ 1
2(𝜆 −𝜎2)𝑚 < 0.

Consequently one must have 𝑚 ≥ 0, that is 𝑢 ≥ 0 a.e. □
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▶ In order to prove 𝜑 > 0 note that if 𝜆 > 𝜎2 and 𝑓 := (𝜆1 + 𝜆)𝜑, we have
𝑓 ≥ 0 and 𝑓 ≢ 0

𝐿𝜑+𝜆𝜑 = 𝑓 ≥ 0

therefore 𝜑 > 0, thanks to the previous lemma.

▶ Next one shows:

4 Lemma. The eigenvalue 𝜆1 is simple.

Proof.

▶ Otherwise there would exist 𝑣 ≢ 0 such that 𝑣± ≢ 0 and 𝐿𝑣 = 𝜆1𝑣.

▶ In particular 𝜆1 ≤ 𝐸(|𝑣|) ≤ 𝐸(𝑣) = 𝜆1, and thus 𝐿 |𝑣| = 𝜆1 |𝑣|.
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▶ Therefore 𝐿𝑣± = 𝜆1𝑣± and for 𝜆 > 𝜎2 by Lemma 3 we have

𝐿𝑣± +𝜆𝑣± = (𝜆1 +𝜆)𝑣± ≥ 0 ⟹ 𝑣± > 0 in ℝ𝑁.

Since (𝑣+|𝑣−) = 0, this is a contradiction. ■
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▶ The eigenfunction𝜑 being found with a simple eigenvalue 𝜆1 < 0, we define

(13) 𝑆0 := {𝑢 ∈ 𝐿2(1 +𝑊) ; (𝑢|𝜑) = 0 and ∫
ℝ𝑁

|𝑢(𝑥)|2 𝑑𝑥 = 1} ,

and

(14) 𝜆2 := inf
𝑢∈𝑆0

𝐸(𝑢).

▶ Then we have

5 Lemma. We have either 𝜆2 ≥ 0 or there exists 𝜓 ∈ 𝑆0 such that

𝜆1 < 𝜆2 = 𝐸(𝜓) < 0.
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▶ Indeed, if 𝜆2 < 0, following the same arguments as in the proof of Theorem
2, one shows that 𝜆2 is achieved for some 𝜓 ∈ 𝑆0.

▶ Now, since 𝜓 ≢ 0, and (𝜑|𝜓) = 0, we have 𝜓± ≢ 0, and

𝜆2 = 𝐸(𝜓) = 𝐸(𝜓+) + 𝐸(𝜓−) + 2𝜎2 ∫
ℝ𝑁

∫
ℝ𝑁

𝐽(𝑦)𝜓+(𝑥 −𝑦)𝜓−(𝑥)𝑑𝑥𝑑𝑦.

▶ However 𝐸(𝜓±) > 𝜆1 ‖𝜓±‖2, since 𝜓± cannot be a multiple of 𝜑, and

𝐸(𝜓+) + 𝐸(𝜓−) > 𝜆1 ‖𝜓+‖2 +𝜆1 ‖𝜓−‖2 = 𝜆1 ‖𝜓‖2 = 𝜆1.

▶ Also clearly

∫
ℝ𝑁

∫
ℝ𝑁

𝐽(𝑦)𝜓+(𝑥 −𝑦)𝜓−(𝑥)𝑑𝑥𝑑𝑦 ≥ 0,

and so 𝜆2 > 𝜆1. ■
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▶ Since (𝐴𝑣|𝑣) ≤ 0, the semigroup 𝑆𝐴(𝑡) := e𝑡𝐴 is contractive in 𝐿2(ℝ𝑁)
‖𝑆𝐴(𝑡)‖𝐿2→𝐿2 ≤ 1.

▶ In what follows let 1 ≤ 𝑝 < ∞. Recall (cf. the book One parameter semi-
groups by K.J. Engel & R. Nagel, chapter 4, § 2) that the growth bound of 𝑆𝐴

is defined as being

𝜔0(𝐴) := inf {𝜔 ∈ ℝ ; ∃𝑀 > 0, ∀𝑡 ≥ 0, ‖𝑆𝐴(𝑡)‖𝐿𝑝→𝐿𝑝 ≤ 𝑀e𝜔𝑡} ,

and the spectral bound of 𝐴 (which is self-adjoint in 𝐿2(ℝ𝑁)) is

𝑠(𝐴) := sup{Re(𝜆) ; 𝜆 ∈ 𝜎(𝐴)} = sup{𝜆 ; 𝜆 ∈ 𝜎(𝐴)} .

▶ Thus in our case we have 𝜔0(𝐴) = 𝑠(𝐴) = 0.
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▶ We wish to show that there exists 𝑎 > 0 such that 𝜎(𝐴)∖{0} ⊂ (−∞,−𝑎],
or

𝜔0(𝐴|𝜑⊥) = 𝑠(𝐴|𝜑⊥) ≤ −𝑎.

▶ To this end we shall use the notion of essential growth bound, defined by

𝜔ess(𝐴) := inf {𝜔 ∈ ℝ ; ∃𝑀 > 0, ∀𝑡 ≥ 0, ‖𝑆𝐴(𝑡)‖ess ≤ 𝑀e𝜔𝑡} ,

where the essential norm of a bounded operator 𝐵 is defined by

‖𝐵‖ess := inf {‖𝐵−𝑇‖𝐿𝑝→𝐿𝑝 ; 𝑇 : 𝐿𝑝(ℝ𝑁) ⟶ 𝐿𝑝(ℝ𝑁) is compact} .

▶ Clearly𝜔ess(𝐴) ≤ 𝜔0(𝐴). One says that 𝑆𝐴 is quasi-compact if𝜔ess(𝐴) < 0,
and the main interest of this notion is the following result (Corollary 2.11,
chapitre 4, § 2 of the above book by Engel & Nagel)



33Spectral gap in the general case

6 Theorem. If 𝜔 > 𝜔ess(𝐴) then

𝜎(𝐴) ∩ {𝜆 ∈ ℂ ; Re(𝜆) ≥ 𝜔} .

is at most a finite number of eigenvalues of 𝐴, each having a finite
multiplicity.

▶ In our case,𝐴 is self-adjoint (in 𝐿2(ℝ𝑁)) and we show that𝜔ess(𝐴) < 0. Then
we fix 0 < 𝑎 < −𝜔ess(𝐴) in order to obtain a decay rate of order e−𝑎𝑡 for
𝑆𝐴(𝑡) in the space 𝜑⊥.

▶ To show that 𝜔ess(𝐴) < 0, we split 𝐴 as the sum of two operators 𝐴0 and 𝐵

𝐴 = 𝐴0 +𝐵, 𝐴0𝑢 := 𝜆1𝑢−𝑊𝑢, 𝐷(𝐴0) := 𝐷(𝐿), 𝐵𝑢 := 𝜎2𝐽 ∗𝑢.
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▶ We have 𝑆𝐴0(𝑡)𝑢0 = e𝑡(𝜆1−𝑊)𝑢0 and

‖𝑆𝐴0(𝑡)‖𝐿𝑝→𝐿𝑝 ≤ e𝜆1𝑡, ‖𝐵‖𝐿𝑝→𝐿𝑝 ≤ 𝜎2.

▶ Writing equation (17) in two forms
𝑑𝑣
𝑑𝑡 = 𝐴0𝑣+ 𝐵𝑣 and 𝑑𝑣

𝑑𝑡 = 𝐵𝑣+𝐴0𝑣, with 𝑣(0) = 𝑣0,

and then considering the mild solution of each of these forms we obtain

𝑣(𝑡) = 𝑆𝐴0(𝑡)𝑣0 +∫
𝑡

0
𝑆𝐴0(𝑡 − 𝜏)𝐵𝑣(𝜏)𝑑𝜏

= 𝑆𝐵(𝑡)𝑣0 +∫
𝑡

0
𝑆𝐵(𝑡 − 𝜏)𝐴0𝑣(𝜏)𝑑𝜏,

one obtains the Duhamel formula
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𝑆𝐴(𝑡) = 𝑆𝐴0(𝑡) + ∫
𝑡

0
𝑆𝐴0(𝑡 − 𝜏)𝐵𝑆𝐴(𝜏)𝑑𝜏

= 𝑆𝐵(𝑡) + ∫
𝑡

0
𝑆𝐵(𝑡 − 𝜏)𝐴0𝑆𝐴(𝜏)𝑑𝜏.

▶ Since ‖𝑆𝐴0(𝑡)‖𝐿𝑝→𝐿𝑝 ≤ e𝜆1𝑡 and 𝜆1 < 0, using the first equality, if we show
that the operator 𝑅𝑡 defined by

𝑅𝑡𝑢 := ∫
𝑡

0
𝑆𝐴0(𝑡 − 𝜏)𝐵𝑆𝐴(𝜏)𝑢𝑑𝜏 = 𝜎2 ∫

𝑡

0
𝑆𝐴0(𝑡 − 𝜏)𝐽 ∗ 𝑆𝐴(𝜏)𝑢𝑑𝜏

is compact from 𝐿𝑝 ⟶ 𝐿𝑝, we may deduce that 𝜔ess(𝐴) < 0.

▶ First we show that for 𝜏 > 0 fixed the operator 𝑢 ↦ 𝐽∗𝑆𝐴(𝜏)𝑢 is compact.
(Use the Kolmogorov-M. Riesz-Fréchet characterization of compact sets in
𝐿𝑝).
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▶ Then one shows that for 𝜀 > 0 the operator

𝑢 ↦ ∫
𝑡

𝜀
𝑆𝐴0(𝑡 − 𝜏)𝐽 ∗ 𝑆𝐴(𝜏)𝑢𝑑𝜏

is compact, and then we pass to the limit 𝜀 → 0.

▶ Finally we deduce

7 Theorem. There exist 𝑐0 > 0 and 𝑎 > 0 such that 𝑢0 ∈ 𝐿𝑝(ℝ𝑁)

‖𝑆𝐴(𝑡)𝑢0 − (𝑢0|𝜑)𝜑‖𝐿𝑝 ≤ 𝑐0 e−𝑎𝑡 ‖𝑢0 − (𝑢0|𝜑)𝜑‖𝐿𝑝 .

▶ The same result can be proved in the space 𝐶0(ℝ𝑁) and the space of boun-
ded measures ℳ(ℝ𝑁). ■
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▶ We want to study the convergence of positive solutions of the nonlocal
equation

(15) {
∂𝑡 𝑢= 𝜎2(𝐽 ∗ 𝑢−𝑢)− (𝑊(𝑥) −𝑊(𝑢))𝑢 in (0,∞) ×ℝ𝑁

𝑢(0,𝑥)= 𝑢0(𝑥) ≥ 0 in ℝ𝑁, 𝑀(𝑢0) = 1.

where 𝐽 ∈ 𝐿1(ℝ𝑁) ∩ 𝐿2(ℝ𝑁) and 𝑊 satisfy

𝐽 ≥ 0, ∫
ℝ𝑁

𝐽(𝑥)𝑑𝑥 = 1, 𝐽(−𝑥) = 𝐽(𝑥), lim
|𝑥|→∞

𝑊(𝑥) = +∞,

while 𝑊(𝑢) is a nonlocal term given by

𝑊(𝑢) := 𝑊(𝑢(𝑡)) := ⟨𝑢(𝑡, ⋅),𝑊⟩ := ∫
ℝ𝑁

𝑊(𝑦)𝑢(𝑡,𝑦)𝑑𝑦.
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▶ We show first a convergence result for the linear equation, upon dropping
the term 𝑊(𝑢)𝑢 and setting

(16) 𝐴𝑣 := −𝐿𝑣+ 𝜆1𝑣 for 𝑣 ∈ 𝐷(𝐴) := 𝐷(𝐿), 𝑣(𝑡) := e(𝜆1+𝜎2)𝑡𝑢(𝑡)

and considering the equation

(17) {
∂𝑡 𝑣= 𝐴𝑣 = −𝐿𝑣+ 𝜆1𝑣 in (0,∞) ×ℝ𝑁

𝑣(0,𝑥)= 𝑢0(𝑥) in ℝ𝑁.

▶ Here we have 𝐴𝜑 = 0, and for 𝑣 ∈ 𝐷(𝐿) ∩𝜑⊥ we know that

(𝐿𝑣|𝑣) ≥ 𝜆2 ‖𝑣‖2 ,
and thus

(𝐴𝑣|𝑣) ≤ (𝜆1 −𝜆2) ‖𝑣‖2 .
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▶ Since 𝜆1 − 𝜆2 < 0, we conclude easily that for any 𝑢0 ∈ 𝜑⊥ the solution
𝑣(𝑡) of (17) converges to zero, and more precisely we have

‖e𝑡𝐴𝑢0‖ = ‖𝑆𝐴(𝑡)𝑢0‖ = ‖𝑣(𝑡)‖ ≤ e(𝜆1−𝜆2)𝑡 ‖𝑢0‖ .

▶ Consequently for any 𝑢0 ∈ 𝐿2(ℝ𝑁) we have

‖𝑆𝐴(𝑡)𝑢0 − (𝑢0|𝜑)𝜑‖ ≤ e(𝜆1−𝜆2)𝑡 ‖𝑢0 − (𝑢0|𝜑)𝜑‖ .

▶ The same result can be established in the spaces 𝐿𝑝(ℝ𝑁) for 1 ≤ 𝑝 < ∞, as
well as in 𝐶0(ℝ𝑁) and in the space of bounded measures ℳ(ℝ𝑁). ■
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▶ Now we turn to the study of the convergence of positive solutions of the
nonlinear nonlocal equation

(18) {
∂𝑡 𝑢= 𝜎2(𝐽 ∗ 𝑢−𝑢)− (𝑊(𝑥) −𝑊(𝑢))𝑢 in (0,∞) ×ℝ𝑁

𝑢(0,𝑥)= 𝑢0(𝑥) ≥ 0 in ℝ𝑁, 𝑀(𝑢0) = 1.

where

𝑊(𝑢) := 𝑊(𝑢(𝑡)) := ⟨𝑢(𝑡, ⋅),𝑊⟩ := ∫
ℝ𝑁

𝑊(𝑦)𝑢(𝑡,𝑦)𝑑𝑦.

▶ Recall that we have set

(19) 𝐴𝑣 := −𝐿𝑣+ 𝜆1𝑣 for 𝑣 ∈ 𝐷(𝐴) := 𝐷(𝐿), 𝑣(𝑡) := e(𝜆1+𝜎2)𝑡𝑢(𝑡)

and that 𝑆𝐴(𝑡) := e𝑡𝐴 is the semigroup generated by 𝐴.
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▶ One shows the following

8 Lemma. Assume that

𝑢0 ≥ 0, (1 +𝑊)𝑢0 ∈ 𝐿1(ℝ𝑁), 𝑀(𝑢0) = 1.
Then the solution of (18) is given by

𝑢(𝑡) = 𝑆𝐴(𝑡)𝑢0

𝑀(𝑆𝐴(𝑡)𝑢0)
.
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▶ We begin by showing that
𝑑
𝑑𝑡𝑀(𝑆𝐴(𝑡)𝑢0) = 𝑀(𝐴𝑆𝐴(𝑡)𝑢0) = (𝜆1 +𝜎2)𝑀(𝑆𝐴(𝑡)𝑢0) −𝑀(𝑊𝑆𝐴(𝑡)𝑢0).

▶ Next, using the above calculation we have

∂𝑡𝑢 = 𝑑
𝑑𝑡

𝑆𝐴(𝑡)𝑢0

𝑀(𝑆𝐴(𝑡)𝑢0)
= 𝐴𝑆𝐴(𝑡)𝑢0

𝑀(𝑆𝐴(𝑡)𝑢0)
− 𝑀(𝐴𝑆𝐴(𝑡)𝑢0)

𝑀(𝑆𝐴(𝑡)𝑢0)
𝑢(𝑡).

= 𝐴𝑢(𝑡) − (𝜆1 +𝜎2)𝑢(𝑡) +𝑀(𝑊𝑢(𝑡))𝑢(𝑡)

= −𝐿𝑢(𝑡) −𝜎2𝑢(𝑡) +𝑊(𝑢(𝑡))𝑢(𝑡)

= 𝜎2(𝐽 ∗ 𝑢−𝑢)−𝑊𝑢+𝑊(𝑢)𝑢.
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▶ We can now state

9 Theorem. Set 𝜑1 := 𝜑/𝑀(𝜑). Then there exists 𝑎 > 0 such that
for any 𝑢0 ≥ 0 and 𝑀(𝑢0) = 1, for a constant 𝑐(𝑢0) depending
on 𝑢0, the solution of (18) satisfies

‖𝑢(𝑡) −𝜑1‖𝐿1 ≤ 𝑐(𝑢0)e−𝑎𝑡.

▶ The result can also be proved for the norms in 𝐿𝑝(ℝ𝑁) for 1 ≤ 𝑝 < ∞, as
well as in 𝐶0(ℝ𝑁) and ℳ(ℝ𝑁).
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▶ It is sufficient to write 𝑧(𝑡) := 𝑢(𝑡) −𝜑1 as

𝑧(𝑡) = 𝑀(𝜑)𝑆𝐴(𝑡)𝑢0 −𝑀(𝑆𝐴(𝑡)𝑢0)𝜑
𝑀(𝑆𝐴(𝑡)𝑢0)𝑀(𝜑)

= (𝑢0|𝜑)𝑀(𝜑)𝑆𝐴(𝑡)𝑢0 −𝑀(𝑆𝐴(𝑡)𝑢0)(𝑢0|𝜑)𝜑
𝑀(𝑆𝐴(𝑡)𝑢0)𝑀(𝜑)(𝑢0|𝜑)

= 𝑀((𝑢0|𝜑)𝜑− 𝑆𝐴(𝑡)𝑢0)𝑆𝐴(𝑡)𝑢0 +𝑀(𝑆𝐴(𝑡)𝑢0) (𝑆𝐴(𝑡)𝑢0 − (𝑢0|𝜑)𝜑)
𝑀(𝑆𝐴(𝑡)𝑢0)𝑀(𝜑)(𝑢0|𝜑)

▶ This yields

‖𝑧(𝑡)‖𝐿1 ≤ ‖𝑆𝐴(𝑡)𝑢0 − (𝑢0|𝜑)𝜑‖𝐿1

𝑀(𝜑)(𝑢0|𝜑) ⋅ ‖𝑆𝐴(𝑡)𝑢0‖𝐿1

𝑀(𝑆𝐴(𝑡)𝑢0)

+ ‖𝑆𝐴(𝑡)𝑢0 − (𝑢0|𝜑)𝜑‖𝐿1

𝑀(𝜑)(𝑢0|𝜑)
■


