Controllability and Riesz bases of infinite-dimensional port-Hamiltonian systems

Birgit Jacob, Julia Kaiser and Hans Zwart

dedicated to Marius Tucsnak on the occation of his 60th birthday

MATHEMATICAL MODELLING, ANALYSIS AND COMPUTATIONAL MATHEMATICS

BERGISCHE UNIVERSITÄT WUPPERTAL

Linear finite-dimensional port-Hamiltonian systems (PHS)

$$\dot{x}(t) = (J - R)\mathcal{H}x(t) + Gu(t)$$
$$y(t) = G^T \mathcal{H}x(t)$$

Hamiltonian: $H(x) = \frac{1}{2}x^T \mathcal{H}x$ State space: \mathbb{R}^n , $\mathcal{H} \in \mathbb{R}^{n \times n}$ positive definite, $J^T = -J$ and $R \ge 0$.

For every $x(0) \in \mathbb{R}^n$ there exists a unique solution and

 $\dot{H}(x(t)) = -(\mathcal{H}x(t))^T R \mathcal{H}x(t) + (y(t))^T u(t) < (y(t))^T u(t).$

(Maschke and van der Schaft '92)

A general linear infinite-dimensional PHS can be written in a similar form, where the state space is an arbitrary Hilbert space and J, R, \mathcal{H} and G are operators.

Example: Wave equation

$$\frac{\partial^2 w}{\partial t^2}(\zeta,t) = \frac{1}{\rho(\zeta)} \frac{\partial}{\partial \zeta} \left[T(\zeta) \frac{\partial w}{\partial \zeta}(\zeta,t) \right]$$

$$H(w(\cdot,t)) = \frac{1}{2} \int_0^1 \rho(\zeta) \left[\frac{\partial w}{\partial t}(\zeta,t)\right]^2 + T(\zeta) \left[\frac{\partial w}{\partial \zeta}(\zeta,t)\right]^2 d\zeta$$

 $\begin{aligned} x_1 &:= \rho \frac{\partial w}{\partial t} \text{ (the momentum), } x_2 &:= \frac{\partial w}{\partial \zeta} \text{ (the strain)} \\ H\left[\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} (\cdot, t) \right] &= \frac{1}{2} \int_0^1 \begin{bmatrix} x_1(\zeta, t) \\ x_2(\zeta, t) \end{bmatrix}^T \begin{bmatrix} \frac{1}{\rho(\zeta)} & 0 \\ 0 & T(\zeta) \end{bmatrix} \begin{bmatrix} x_1(\zeta, t) \\ x_2(\zeta, t) \end{bmatrix} d\zeta \\ &\frac{\partial}{\partial t} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} (\zeta, t) = \left(\underbrace{ \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}}_{P_1} \frac{\partial}{\partial \zeta} \right) \begin{bmatrix} \underbrace{ \begin{bmatrix} \frac{1}{\rho(\zeta)} & 0 \\ 0 & T(\zeta) \end{bmatrix}}_{\mathcal{H}(\zeta)} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} (\zeta, t) \end{bmatrix} \end{aligned}$

Example: The Timoshenko beam

$$\rho(\zeta)\frac{\partial^2 w}{\partial t^2}(\zeta,t) = \frac{\partial}{\partial \zeta} \left[K(\zeta) \left[\frac{\partial w}{\partial \zeta}(\zeta,t) - \phi(\zeta,t) \right] \right]$$
$$I_{\rho}(\zeta)\frac{\partial^2 \phi}{\partial t^2}(\zeta,t) = \frac{\partial}{\partial \zeta} \left[EI(\zeta)\frac{\partial \phi}{\partial \zeta} \right] + K(\zeta) \left[\frac{\partial w}{\partial \zeta}(\zeta,t) - \phi(\zeta,t) \right]$$

 $w(\zeta,t)=$ is transverse displacement of the beam $\phi(\zeta,t)=$ is rotation angle of a filament of the beam

$$\begin{array}{lll} x_1(\zeta,t) &=& \frac{\partial w}{\partial \zeta}(\zeta,t) - \phi(\zeta,t) & \text{shear displacement} \\ x_2(\zeta,t) &=& \rho(\zeta) \frac{\partial w}{\partial t}(\zeta,t) & \text{momentum} \\ x_3(\zeta,t) &=& \frac{\partial \phi}{\partial \zeta}(\zeta,t) & \text{angular displacement} \\ x_4(\zeta,t) &=& I_{\rho}(\zeta) \frac{\partial \phi}{\partial t}(\zeta,t) & \text{angular momentum} \end{array}$$

Example: The Timoshenko beam

$$\begin{aligned} \frac{\partial x}{\partial t}(\zeta,t) &= \left[P_1\frac{\partial}{\partial \zeta} + P_0\right] \left[\mathcal{H}(\zeta)x(\zeta,t)\right] \\ H(x(\cdot,t)) &= \frac{1}{2}\int_0^1 x(\zeta,t)^T \mathcal{H}(\zeta)x(\zeta,t)d\zeta. \end{aligned}$$

$$\begin{split} \text{with } P_1 &= \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} P_0 = \begin{bmatrix} 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \\ \mathcal{H}(\zeta) &= \begin{bmatrix} K(\zeta) & 0 & 0 & 0 \\ 0 & \frac{1}{\rho(\zeta)} & 0 & 0 \\ 0 & 0 & EI(\zeta) & 0 \\ 0 & 0 & 0 & \frac{1}{I_{\rho}(\zeta)} \end{bmatrix} \end{split}$$

Infinite-dimensional PHS

$$\frac{\partial x}{\partial t}(\zeta,t) = \underbrace{\left[P_1 \frac{\partial}{\partial \zeta} + P_0\right]}_{J-R} \left[\mathcal{H}(\zeta)x(\zeta,t)\right]$$
$$H(x(\cdot,t)) = \frac{1}{2} \int_0^1 x(\zeta,t)^T \mathcal{H}(\zeta)x(\zeta,t)d\zeta$$

- ▶ $P_1 \in \mathbb{R}^{n \times n}$ invertible, symmetric, $P_0 \in \mathbb{R}^{n \times n}$ anti-symmetric,
- $\mathcal{H}(\zeta) \in \mathbb{R}^{n \times n}$ symmetric, invertible with $mI \leq \mathcal{H}(\zeta) \leq MI$ for m, M > 0.

 $\begin{aligned} x(\zeta,t) \in \mathbb{R}^n \text{ and } x(t) &:= x(\cdot,t) \in L^2([0,1];\mathbb{R}^n) \\ \text{State space } X &:= L^2([0,1];\mathbb{R}^n), \ \langle x,y \rangle = \frac{1}{2} \int_0^1 x(\zeta)^T \mathcal{H}(\zeta) y(\zeta) \, d\zeta. \\ \dot{x}(t) &= \left[P_1 \frac{\partial}{\partial \zeta} + P_0 \right] [\mathcal{H}x(t)] \end{aligned}$

(Le Gorrec, Zwart, Maschke, Villegas, van der Schaft '05)

Infinite-dimensional PHS

Boundary effort e_{∂} and boundary flow f_{∂} :

$$\begin{pmatrix} f_{\partial} \\ e_{\partial} \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} P_1 & -P_1 \\ I & I \end{pmatrix} \begin{pmatrix} [\mathcal{H}x](1) \\ [\mathcal{H}x](0) \end{pmatrix}.$$

$$\frac{\partial x}{\partial t}(\zeta,t) = \left(P_1 \frac{\partial}{\partial \zeta} + P_0\right) \left[\mathcal{H}(\zeta) x(\zeta,t)\right]$$
$$H(x(\cdot,t)) = \frac{1}{2} \int_0^1 x(\zeta,t)^T \mathcal{H}(\zeta) x(\zeta,t) d\zeta$$
$$u(t) = W_B \begin{pmatrix} f_{\partial}(t) \\ e_{\partial}(t) \end{pmatrix}, \quad y(t) = W_C \begin{pmatrix} f_{\partial}(t) \\ e_{\partial}(t) \end{pmatrix}$$

with $W_B, W_C \in \mathbb{R}^{n \times 2n}$ and $\left[\begin{smallmatrix} W_B \\ W_C \end{smallmatrix} \right]$ invertible. Then:

$$\begin{aligned} \frac{dH}{dt}(x(\cdot,t)) &= \frac{1}{2} \begin{bmatrix} \left[\mathcal{H}x \right]^T (\zeta,t) P_1 \left[\mathcal{H}x \right] (\zeta,t) \end{bmatrix}_0^1 = e_\partial(t)^T f_\partial(t) \le u(t)^T y(t) \\ \text{if } \begin{pmatrix} W_B \Sigma W_B^T & W_B \Sigma W_C^T \\ W_C \Sigma W_B^T & W_C \Sigma W_C^T \end{pmatrix}^{-1} \le \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix}, \text{ where } \Sigma = \begin{bmatrix} 0 & I \\ I & 0 \end{bmatrix}. \end{aligned}$$

Jacob, Controllability and Riesz bases of infinite-dimensional port-Hamiltonian systems

Infinite-dimensional PHS

$$\frac{\partial x}{\partial t}(\zeta,t) = (P_1 \frac{\partial}{\partial \zeta} + P_0)[\mathcal{H}(\zeta)x(\zeta,t)], \ u(t) = W_B \begin{bmatrix} f_{\partial}(t) \\ e_{\partial}(t) \end{bmatrix}, \ y(t) = W_C \begin{bmatrix} f_{\partial}(t) \\ e_{\partial}(t) \end{bmatrix}$$

The system is called

- impedance passive, if $\frac{dH}{dt}(x(\cdot,t)) \le u(t)^T y(t)$.
- impedance energy preserving, if $\frac{dH}{dt}(x(\cdot,t)) = u(t)^T y(t)$.

Theorem

$$The system is impedance passive \iff \\ \begin{bmatrix} W_B \Sigma W_B^T & W_B \Sigma W_C^T \\ W_C \Sigma W_B^T & W_C \Sigma W_C^T \end{bmatrix}^{-1} \leq \begin{bmatrix} 0 & I \\ I & 0 \end{bmatrix}.$$

► The system is impedance energy preserving $\iff \begin{bmatrix} W_B \Sigma W_B^T & W_B \Sigma W_C^T \\ W_C \Sigma W_B^T & W_C \Sigma W_C^T \end{bmatrix} = \begin{bmatrix} 0 & I \\ I & 0 \end{bmatrix}.$

• If the system is impedance passive, then $W_B \Sigma W_B^T \ge 0$.

In the following we always assume $W_B \Sigma W_B^T \ge 0$.

$$\frac{\partial x}{\partial t}(\zeta,t) = (P_1 \frac{\partial}{\partial \zeta} + P_0)[\mathcal{H}(\zeta)x(\zeta,t)], \ u(t) = W_B \begin{bmatrix} f_{\partial}(t) \\ e_{\partial}(t) \end{bmatrix}, \ y(t) = W_C \begin{bmatrix} f_{\partial}(t) \\ e_{\partial}(t) \end{bmatrix}$$

$$\begin{split} X &= L^2([0,1]; \mathbb{R}^n), \qquad \langle x, y \rangle = \frac{1}{2} \int_0^1 x(\zeta)^T \mathcal{H}(\zeta) y(\zeta) \, d\zeta \\ Ax &= \left[P_1 \frac{d}{d\zeta} + P_0 \right] [\mathcal{H}x] \\ D(A) &= \left\{ x \in X \mid \frac{d}{d\zeta} \mathcal{H}x \in X, W_B \begin{bmatrix} f_{\partial} \\ e_{\partial} \end{bmatrix} = 0 \right\} \end{split}$$

Theorem (Le Gorrec, Zwart, Maschke '05)

A generates a contraction semigroup A generates a unitary group $\iff W_B \Sigma W_B^T = 0$

Jacob, Controllability and Riesz bases of infinite-dimensional port-Hamiltonian systems

Example: Wave equation

rank $W_B = 2$ and $W_B \Sigma W_B{}^T = 0$. Thus A gen. a unitary group.

Well-posedness of PHS

 $\frac{\partial x}{\partial t}(\zeta,t) = (P_1 \frac{\partial}{\partial \zeta} + P_0)[\mathcal{H}(\zeta)x(\zeta,t)], \ u(t) = W_B \begin{bmatrix} f_{\partial}(t) \\ e_{\partial}(t) \end{bmatrix}, \ y(t) = W_C \begin{bmatrix} f_{\partial}(t) \\ e_{\partial}(t) \end{bmatrix}$

 $P_1\mathcal{H}$ can be factorized as $P_1\mathcal{H}(\zeta) = S^{-1}(\zeta)\Delta(\zeta)S(\zeta)$.

Theorem (Zwart, Le Gorrec, Maschke, Villegas '10)

If Δ, S are continuously differentiable, then

•
$$Ax = (P_1 \frac{d}{d\zeta} + P_0) [\mathcal{H}x]$$
 with
 $D(A) = \{x \in X \mid (\mathcal{H}x)' \in X, W_B \begin{bmatrix} f_{\partial} \\ e_{\partial} \end{bmatrix} = 0\}$ generates a contraction semigroup on X .

• There are $t_0, m_{t_0} > 0$: Every classical solution satisfies $\|x(t_0)\|_X^2 + \int_0^{t_0} \|y(t)\|^2 dt \le m_{t_0} \left[\|x(0)\|_X^2 + \int_0^{t_0} \|u(t)\|^2 dt \right].$

For every initial condition $x_0 \in X$ and input function $u \in L^2_{loc}([0,\infty),\mathbb{R}^n)$ the system has a (mild) solution $x \in C([0,\infty), X)$ and $y \in L^2_{loc}([0,\infty),\mathbb{R}^n)$.

 $\frac{\partial x}{\partial t}(\zeta,t) = (P_1 \frac{\partial}{\partial \zeta} + P_0)[\mathcal{H}(\zeta)x(\zeta,t)], \ u(t) = W_B \begin{bmatrix} f_{\partial}(t) \\ e_{\partial}(t) \end{bmatrix}, \ y(t) = W_C \begin{bmatrix} f_{\partial}(t) \\ e_{\partial}(t) \end{bmatrix}$

A system is exactly controllable if $\exists \tau > 0 \ \forall x_1 \in X \ \exists u \in L^2(0, \tau, \mathbb{R}^n)$: mild solution x satisfies: $x(0) = 0 \text{ and } x(\tau) = x_1.$

Theorem (J., Zwart, 2018)

Every impedance energy preserving port-Hamiltonian system is exactly controllable.

Sketch of the proof:

- \blacktriangleright -A generates a contraction semigroup.
- Exact controllability is equivalent to optimizability (Rebarber, Weiss '97).

System is optimizable by u(t) = -ky(t), k > 0. (Humaloja, Paunonen '18)

Exact controllability of PHS

$$\frac{\partial x}{\partial t}(\zeta,t) = (P_1 \frac{\partial}{\partial \zeta} + P_0) [\mathcal{H}(\zeta) x(\zeta,t)], \ u(t) = W_B \begin{bmatrix} f_{\partial}(t) \\ e_{\partial}(t) \end{bmatrix}, \ y(t) = W_C \begin{bmatrix} f_{\partial}(t) \\ e_{\partial}(t) \end{bmatrix}$$

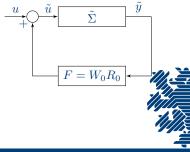
Main Theorem (K., Jacob 2019)

Every port-Hamiltonian system is exactly controllable.

Sketch of the proof:

Open-loop system exactly controllable \iff Closed loop system exactly controllable (Weiss '94)

$$\begin{split} W_B &= \begin{bmatrix} W_1 & W_0 \end{bmatrix} \\ \text{Exist } R_1, R_0 \in \mathbb{R}^{n \times n} \text{ invertible:} \\ W_B \begin{bmatrix} R_1 \\ R_0 \end{bmatrix} &= I. \\ \tilde{\Sigma} \text{ is a port-Hamiltonian system with} \\ \tilde{u}(t) &= \begin{bmatrix} R_1^{-1} & 0 \end{bmatrix} \begin{bmatrix} f_{\partial}(t) \\ e_{\partial}(t) \end{bmatrix}, \\ \tilde{y}(t) &= \begin{bmatrix} R_1^{-1} & R_0^{-1} \end{bmatrix} \begin{bmatrix} f_{\partial}(t) \\ e_{\partial}(t) \end{bmatrix} \end{split}$$



The system operator A

 $Ax = (P_1 \frac{d}{d\zeta} + P_0) \ [\mathcal{H}x], \ D(A) = \{x \in X \mid (\mathcal{H}x)' \in X, W_B \begin{bmatrix} f_{\partial} \\ e_{\partial} \end{bmatrix} = 0\}$

Theorem

- Spectrum σ(A) = {λ_k}, λ_k isolated eigenvalue with finite multipl. (Augner '16)
- $\blacktriangleright \operatorname{Re} \lambda_k \leq 0.$
- ► { λ_k } can be decomposed in n interpolating sequences ($\inf_k \prod_{i \neq k} \left| \frac{\mu_i - \mu_k}{\mu_i + \overline{\mu_k}} \right|$). (J., Zwart '01)

► If A generates a
$$C_0$$
-group, then
 $-\infty < \inf \operatorname{Re} \lambda_k \le \sup \operatorname{Re} \lambda_k \le 0$ and

$$X = \operatorname{span}_{k \in \mathbb{N}} E(\lambda_k) X,$$

where $E(\lambda_k)$ are the spectral projections. (J., Zwart '99) There are port-Hamiltonian systems with $\sigma(A) = \emptyset$. E.g. $Ax = \frac{d}{dt}x$ with $D(A) = \{x \in X \mid x' \in X, x(1) = 0\}$

 $Ax = (P_1 \frac{d}{d\zeta} + P_0) [\mathcal{H}x] \text{ with}$ $D(A) = \{x \in X \mid (\mathcal{H}x)' \in X, W_B \begin{bmatrix} f_{\partial} \\ e_{\partial} \end{bmatrix} = 0\}$

Theorem

$$W_B \Sigma W_B^T = 0 \implies$$
 Normalized eigenvectors of A form an ONB.

Question: Does a similar result hold for impedance passive system?

In general no: There are port-Hamiltonian systems with $\sigma(A) = \emptyset$. E.g. $Ax = \frac{d}{d\zeta}x$ with $D(A) = \{x \in X \mid x' \in X, x(1) = 0\}$

Let A be an operator with compact resolvent and $\sigma(A) = (\lambda_k)_{k \in \mathbb{N}}$. $E_k := E((\lambda_k))$, spectral projection regarding the kth eigenvalue.

Definition

A is a discrete Riesz spectral operator, if

1. for every $k \in \mathbb{N}$ there exists $N_k \in \mathcal{L}(X)$ such that

$$AE_k = \lambda_k E_k + N_k,$$

- the sequence of closed subspaces (E_k(X))_{k∈N} is a Riesz basis of subspaces of X, that is, span(E_k(X))_{k∈N} is dense and there exists an isomorphism T ∈ L(X), such that (TE_k(X))_{k∈N} is system of pairwise orthogonal subspaces of X.
- 3. $N := \sum_{k \in \mathbb{N}} N_k$ is bounded and nilpotent.

$$Ax = (P_1 \frac{d}{d\zeta} + P_0) [\mathcal{H}x] \text{ with}$$

$$D(A) = \{x \in X \mid (\mathcal{H}x)' \in X, W_B \begin{bmatrix} f_{\partial} \\ e_{\partial} \end{bmatrix} = 0\}$$

$$[W_1 W_0] := W_B \frac{1}{\sqrt{2}} \begin{bmatrix} P_1 & -P_1 \\ I & I \end{bmatrix}$$

 $Z^{-}(1) :=$ span of the eigenv. of $P_1\mathcal{H}(1)$ to its negative eigenvalues $Z^{+}(0) :=$ span of the eigenv. of $P_1\mathcal{H}(0)$ to its positive eigenvalues

Theorem

The following are equivalent:

- 1. A is a discrete Riesz spectral operator.
- 2. -A is the generator of a C_0 -semigroup.
- 3. $W_1 \mathcal{H}(1) Z^-(1) \oplus W_0 \mathcal{H}(0) Z^+(0) = \mathbb{R}^n$.

Sketch of the proof:

2. \iff 3.: J. Morris, Zwart '15

Theorem

The following are equivalent:

- 1. A is a discrete Riesz spectral operator.
- 2. -A is the generator of a C_0 -semigroup.
- 3. $W_1\mathcal{H}(1)Z^-(1) \oplus W_0\mathcal{H}(0)Z^+(0) = \mathbb{C}^n$.

Sketch of the proof:

2. \Longrightarrow 1.: $\sigma(A) = (\lambda_k)_k$ counted with algebraic multiplicity.

- ► $X = \overline{\operatorname{span}_{k \in \mathbb{N}} E(\lambda_k) X}$, where $E(\lambda_k)$ are the spectral projections. (J., Zwart '99)
- Exists a sine-type function with zeros $(\lambda_k)_k$
- (λ_k)_k can be decomposed into finitely many set having a uniform gap. (Levin '61)
- Zwart '10 implies the statement.
- 1. \Longrightarrow 2.: Resolvent estimates and perturbation theory.

Spectrum of discrete Riesz spectral PH operators

Assume A is a discrete Riesz spectral operator.

- ► $\sigma(A) = \sigma_p(A) = (\lambda_k)_{k \in \mathbb{N}}$ lie in a strip parallel to the imaginary axis.
- ► the eigenvalues (counted according to the algebraic multiplicity) can be decomposed into finitely many sets each having a uniform gap, i.e., inf_{k≠m} |µ_k µ_m| > 0.
- A satisfies the spectrum determined growth assumption, that is, ω₀(A) = s(A). (Guo, Zwart '01)

Example: A damped wave equation

$$\begin{array}{l} \underbrace{\frac{\partial}{\partial t} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} (\zeta, t) = \underbrace{\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}}_{=P_1} \frac{\partial}{\partial \zeta} \begin{bmatrix} \begin{bmatrix} \frac{1}{\rho(\zeta)} & 0 \\ 0 & T(\zeta) \end{bmatrix}}_{=\mathcal{H}} x(\zeta, t) \end{bmatrix}}_{u(t) = \begin{bmatrix} \kappa & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} (\mathcal{H}x)(1, t) \\ (\mathcal{H}x)(0, t) \end{bmatrix}}_{\kappa > 0, \quad T(0) \neq \kappa \gamma(0).} \end{array}$$

$$W_B \Sigma W_B^T \ge 0$$
 and $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \gamma(1) \\ T(1) \end{bmatrix}$ and $\begin{bmatrix} \kappa & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} -\gamma(0) \\ T(0) \end{bmatrix}$ are lin. independent.

Thus, the port-Hamiltonian operator A is a discrete Riesz spectral operator. Remark: Xu, Weiss '11 proved the result for constant functions ρ and T only.

Jacob, Controllability and Riesz bases of infinite-dimensional port-Hamiltonian systems

Example: A damped Timoshenko-beam

Timoshenko-beam clamped at $\zeta = 0$ and controlled at $\zeta = 1$ by momentum and angular momentum feedback can be modelled by

$$P_{1} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}, \mathcal{H}(\zeta) = \begin{bmatrix} K(\zeta) & 0 & 0 & 0 \\ 0 & \frac{1}{P(\zeta)} & 0 & 0 \\ 0 & 0 & EI(\zeta) & 1 \\ 0 & 0 & 0 & \frac{1}{I_{P}(\zeta)} \end{bmatrix} \text{ and }$$
$$P_{0} = \begin{bmatrix} 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix},$$
$$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} W_{1} & W_{0} \end{bmatrix} \begin{bmatrix} (\mathcal{H}x)(1,t) \\ (\mathcal{H}x)(0,t) \end{bmatrix} \text{ with } \begin{bmatrix} W_{1} & W_{0} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & \alpha_{1} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & \alpha_{2} & 0 & 0 & 0 \end{bmatrix}$$
where $\alpha_{1} > 0, \ \alpha_{2} > 0$ are given gain feedback constants.

Associated system operator is a discrete Riesz spectral operator.

Remark: If the physical constants are independent of ζ , then Xu, Feng '02 showed that the eigenvectors and generalized eigenvectors form a Riesz basis.

Thanks for your attention! Happy Birthday Marius!

Jacob, Controllability and Riesz bases of infinite-dimensional port-Hamiltonian systems