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Linear finite-dimensional port-Hamiltonian systems (PHS)

#(t) = (J — R)yHa(t) + Gu(t)
y(t) = G Ha(t)

Hamiltonian: H(z) = 27Hz  State space: R",

H € R™™ positive definite, J© = —.J and R > 0.
For every 2:(0) € R" there exists a unique solution and
H(x(t)) = —(Ha(t))" RHa(t) + (y(t) () < (y(1) u(t).

(Maschke and van der Schaft '92)

A general linear infinite-dimensional PHS can be written in a %,
similar form, where the state space is an arbitrary Hilbert space ///;E_
and J, R, H and G are operators. 4
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Example: Wave equation
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Example: The Timoshenko beam
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w((,t) = is transverse displacement of the beam
o(C,t) = is rotation angle of a filament of the beam

x1(¢,t) = ?;g({,t)—qﬁ(g,t) shear displacement

B = pQCH  momentum
¢ .

x3((,t) = —((,t) angular displacement oy B
oC 96 //9-%

z4(Ct) = Ip(C)E(C,t) angular momentum yyg
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Example: The Timoshenko beam
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Infinite-dimensional PHS

‘Zﬂg(g,t) = {Plgg + Po] [H(O)z (¢ )]

_——
J—R

1
() = 3 [ alCom Qe nac

> P € R™ ™ invertible, symmetric, Py € R™*™ anti-symmetric,

> H(¢) € R™*™ symmetric, invertible with m /[ < H(() < M1
for m, M > 0.

z(¢,t) € R" and z(t) := x(-,t) € L*([0, 1]; R")
State space X i= L2(0, 1 R"), (#.9) = 3 [y o(O)THO9(O) dC. 4y 2
(1) = [Pl(% + PO} [Ha(t)] Y=

(Le Gorrec, Zwart, Maschke, Villegas, van der Schaft '05) //Zé
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Infinite-dimensional PHS

Boundary effort e5 and boundary flow fj:
fo\ _ 1 (P =P\ ([H](1)
() -5 (0 1) Gew)
0 1) = (P 4 Po) [H(Q)(C. 1)
ot ) — 1 aC 0 )
1 [
H(e ) = 5 [ oGt Q0
)y =wa (720). w0 =we (20)

with W, We € R™?" and [ 12 | invertible. Then:

T 1) = 5 [a)” (P [ (6,1)], = ealt) alt) < u)(e) B
=

g N D
(W )< (3 1), whee s =5 W7
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Infinite-dimensional PHS

%2(C,6)= (P &+ Po)[H(Q)a(C, 1)), u(®) =W | 2], y&)=Wo [ 20

The system is called
» impedance passive, if %I(a:(-,t)) <u(t)Ty(t).

> impedance energy preserving, if 4 (z(-,t)) = u(t)Ty(t).

» The system is impedance passive <=
[WBEWg WBEWg]_l <[01]
WoEWL WoswZ =110]"
» The system is impedance energy preserving <=
[WBzwg WBEWg] - [0[]
WesWE weswg | = L10]-

N
fir

N
M

» [f the system is impedance passive, then WBEW§ > 0.

In the following we always assume WBEVVg > 0.
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Infinite-dimensional PHS

%2(C,6)= (P &+ Po)[H(Q)a(C, 1)), u(®) =W | 2], y&)=Wo [ 20

X =L2([0,1;R™),  (z.y) = L [T 2(OTHQy(C) dC
Az = [Pld% + PO] [Ha]

D(A) = {x €X|fHre X, W [gﬂ :0}

A generates a contraction semigroup "
A generates a unitary group :}WBZWE =0 z//—_
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Example: Wave equation

ot ¢
1 [T21) - T(0)22(0)
h=1 98.(1) — 22 0) ]
1 8u(1) + 92(0)
=7 {Tu)f’?g(l) ¥ 1%)815(0)]

Jacob, Controllability and Riesz bases of infinite-dimensional port-Hamiltonian systems



Well-posedness of PHS

82(C,0) = (P& +P)[H(Qw(C, D), u(t) =W | 120 |, y(t) =we| 2] ]

Py can be factorized as PyH(¢) = S™H)A(C)S(€).

If A, S are continuously differentiable, then
> Az = (P1j + Py [Hax] with
D(A) ={z € X | (Hz) € X,Wg[{2] =0} generates a
contraction semigroup on X.
» There are tg,my, > 0: Every classical solution satisfies

lato) % + i w12 < m [Il2(0)1% + i u()]2de].

» For every initial condition xo € X and input function ’/4/—_
u € L2 ([0,00),R™) the sysgem has a ( n;llild) solution ",///'E
xz € C([0,00),X) and y € Lj, ([0,00),R™). %/;g
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Exact controllability of PHS

82(C, 1) = (P + Po)[H(Qa(G, )], u(t) =W | 20 | gty =we | 220 ]

A system is exactly controllable if
37 >0Ve, € X Ju € L0, 7,R"™): mild solution x satisfies:
2(0) =0 and z(7) = 1.

Every impedance energy preserving port-Hamiltonian system is
exactly controllable.

Sketch of the proof:
> — A generates a contraction semigroup.
» Exact controllability is equivalent to optimizability (Rebarber, z, /__='
Weiss ‘97). //,E
» System is optimizable by u(t) = —ky(t), k > 0. (Humaloja, //73
Paunonen ‘18) g
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Exact controllability of PHS

82(C,0) = (P& +P)[H(Qw(C, D), u(t) =W | 120 |, y(t) =we| 2] ]

Every port-Hamiltonian system is exactly controllable.

Sketch of the proof:
Open-loop system exactly controllable <= Closed loop system
exactly controllable (Weiss '94)

i . Y
Wp = [Wl Wo] %O_U>

Exist Ry, Ry € R™ ™ invertible:

Wp [g;] =1 N
S is a port-Hamiltonian system with %——f
Sy — [p-1 o] [fo®) A —
at) = [RyY 0] [20], /Z/;,E__
i = Ry By'] [29] 9
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The system operator A

Ar=(Py e+ Py) [Ha], D(A)={z € X | (Hx) € X, Wp[[3] =0}

» Spectrum o(A) = { Ay}, \i isolated eigenvalue with finite
multipl. (Augner ‘16)

Re )\, <0.

» {\i} can be decomposed in n interpolating sequences

(infy, H#k Zi;’%‘) (J., Zwart ‘01)

» [|f A generates a Cy-group, then
—oo < inf Re A\, < supRe A, <0 and

v

X = spangcnE(Ap) X,
where E()\y) are the spectral projections. (J., Zwart ‘99) =
U
» There are port-Hamiltonian systems with o(A) = (). ; 7‘-

Eg Ax = d%:l: with D(A) = {z € X |2/ € X,2(1) = 0} %
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Discrete Riesz spectral operator

Az = (P + Po) [Hz] with
D(A)={z € X | (Hz) € X,Wg[l2] =0}

WgXWJ = 0 = Normalized eigenvectors of A form an ONB.

Question: Does a similar result hold for impedance passive system?

In general no: There are port-Hamiltonian systems with o(A) = (Z).///-_
Eg Az = d%a; with D(A) ={z € X |2/ € X,z(1) =0} y
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Discrete Riesz spectral operator

Let A be an operator with compact resolvent and o (A) = (A\g)ren.

Ei = E((\g)), spectral projection regarding the kth eigenvalue.

A is a discrete Riesz spectral operator, if
1. for every k € N there exists N € £(X) such that

AEy = A\ By + Ng,

2. the sequence of closed subspaces (Ej(X))ken is a Riesz basis
of subspaces of X, that is, span(Ex(X))ken is dense and
there exists an isomorphism 7" € £(X), such that
(TER(X))ren is system of pairwise orthogonal subspaces of ’/_—=

T —
X. ',,/,'—,':;
3. N:=) 1y Nk is bounded and nilpotent. %zé
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Discrete Riesz spectral operator

Az = (P + Po) [Hz] with
D(A)={z € X | (Hx) € X,Wp[{e] =0}

[Wl Wo] = WB% [Fl)l 7;31]

Z~ (1) := span of the eigenv. of P;H(1) to its negative eigenvalues
Z1(0) := span of the eigenv. of Py (0) to its positive eigenvalues

The following are equivalent:
1. A is a discrete Riesz spectral operator.
2. —A is the generator of a Cp-semigroup.
3. WiH(1)Z~(1) ® WoH(0)ZT(0) = R™, 9/,‘

Sketch of the proof:
2. <= 3.: J. Morris, Zwart ‘15
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Discrete Riesz spectral operator

The following are equivalent:
1. A is a discrete Riesz spectral operator.
2. —A is the generator of a Cy-semigroup.
3. WiH(1)Z~ (1) ® WoH(0)ZT(0) = C™,
Sketch of the proof:
2. = 1.0 0(A) = (\p)r counted with algebraic multiplicity.
» X =spangnE(A;) X, where E(\;) are the spectral
projections. (J., Zwart ‘99)
» Exists a sine-type function with zeros (Ay)x

» (Ax)r can be decomposed into finitely many set having a ///
uniform gap. (Levin '61) y//,—

» Zwart ‘10 implies the statement.

1. = 2.: Resolvent estimates and perturbation theory.
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Spectrum of discrete Riesz spectral PH operators

Assume A is a discrete Riesz spectral operator.

» 0(A) = 0,(A) = (Ak)ken lie in a strip parallel to the
imaginary axis.

» the eigenvalues (counted according to the algebraic
multiplicity) can be decomposed into finitely many sets each
having a uniform gap, i.e., infy,, [tk — | > 0.

» A satisfies the spectrum determined growth assumption, that
is, wo(A) = s(A). (Guo, Zwart ‘01)
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Example: A damped wave equation

UK £ 1 T—(0) -
WSWE > 0 and [o 1] [ ()} and [0 0] [ ()}arelln.

independent.

Thus, the port-Hamiltonian operator A is a discrete Riesz spectral//-—=

operator. ///_
Remark: Xu, Weiss ‘11 proved the result for constant functions p //g
and T only.
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Example: A damped Timoshenko-beam

Timoshenko-beam clamped at ( = 0 and controlled at { =1 by
momentum and angular momentum feedback can be modelled by

K 0 0 0

1000 0 S 0 0
Pr=1¢001-HO=1| ¢ pi¢) 1 | and
0010 0 0 0 o

000 —1
_lo00 0
Py = 000 0 |

100 0

0

0 (H)(1,1) 00000000
x)(1, .
[8] = [ wo] [(Hm)(O,t)} with [wi o | = [1 10 0 0000}
) _ 00 1a20000
where a; > 0, ao > 0 are given gain feedback constants.
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Thanks for your attention!
Happy Birthday Marius!
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