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A KdV control system with only one control

Following L. Rosier (1997), we consider the KdV control system

{

yt + yx + yxxx + yyx = 0, t ∈ [0, T ], x ∈ [0, L],
y(t, 0) = y(t, L) = 0, yx(t, L) = u(t), t ∈ [0, T ],

(1)

where, at time t ∈ [0, T ], the state is y(t, ·) ∈ L2(0, L) and the control is
u(t) ∈ R.



Controllability of the linearized control system

The linearized control system (around 0) is

{

yt + yx + yxxx = 0, t ∈ [0, T ], x ∈ [0, L],
y(t, 0) = y(t, L) = 0, yx(t, L) = u(t), t ∈ [0, T ],

(2)

where, at time t ∈ [0, T ], the state is y(t, ·) ∈ L2(0, L) and the control is
u(t) ∈ R.

Theorem (L. Rosier (1997))

For every T > 0, the linearized control system is controllable in time T if
and only

(3) L 6∈ N :=

{

2π

√

k2 + kl + l2

3
, k ∈ N

∗, l ∈ N
∗

}

.

Moreover, if L ∈ N , the uncontrollable part is a linear space (later denoted
M) of finite dimension.
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Application to the nonlinear system

Theorem (L. Rosier (1997))

For every T > 0, the KdV control system is locally controllable (around 0)
in time T if L 6∈ N for the L2-norm for the state and the L2-norm for the
control.

Remark

The above controllability property is called Small-Time Local
Controllability, STLC in short: the time, the state, and the controls are
small (for suitable norms).



Controllability when L ∈ N

Theorem (STLC if dim(M) = 1, JMC and E. Crépeau (2004))

If the uncontrollable part M of the linearized system is of dimension 1, for
every T > 0 the KdV control system is locally controllable (around 0) in
time T .

Remark

If L = 2π, M is of dimension 1 and there are infinitely many L such that
M is of dimension 1.

Theorem (Local controllability in large time, E. Cerpa (2007), E.
Cerpa and E. Crépeau (2008))

For every L ∈ N , there exists T > 0 such that the KdV control system is
locally controllable (around 0) in time T .



The proofs of these theorems rely on the power series expansion method.
In the first theorem an expansion to the order 3 is required, while in the
secund theorem an expansion to the order 2 is used. For the order 3 the
computations are more complicate but the fact that this order is odd helps
to get the local controllability in small time.



STLC for every L ∈ N ?

Question (Small-time local controllability)

Assume that dim(M) > 1. Is is true that for every T > 0 the control system

{

yt + yx + yxxx + yyx = 0, t ∈ [0, T ], x ∈ [0, L],
y(t, 0) = y(t, L) = 0, yx(t, L) = u(t), t ∈ [0, T ],

(4)

is locally controllable in time T ?



Theorem (JMC, A. Koenig and H.-M. Nguyen (2020))

Let k, l ∈ N \ {0} be such that 2k + l 6∈ 3N. Assume that

(5) L = 2π

√

k2 + kl + l2

3
.

Then our KdV control system is not small-time locally null-controllable
with controls in H1 and initial datum in H3(0, L) ∩H1

0 (0, L), i.e., there
exist T0 > 0 and ε0 > 0 such that, for every δ > 0, there is
y0 ∈ H3(0, L) ∩H1

0 (0, L) with ‖y0‖H3(0,L) < δ such that for every
u ∈ H1(0, T0) with ‖u‖H1(0,T0) < ε0 and u(0) = y′0(L), we have

(6) y(T0, ·) 6= 0,

where y ∈ C
(

[0, T0];H
3(0, L)

)

∩ L2
(

[0, T0];H
4(0, L)

)

is the unique
solution of our control system for the control u and starting from y0.



Open problem (Regularity and small-time local controllability)

Is the KdV control system is small-time locally null controllable with initial
in L2(0, L) and control in L2(0, T ) for a critical length as in the previous
theorem?

Open problem (Just dimM > 1)

Can the assumption 2k + l 6∈ 3N be replaced by the weaker assumption
dimM > 1?

Open problem (Optimal time)

What is the minimal time for local controllability?



Another obstruction: The water tank control system

u = F

The modelling is done with the Saint-Venant equations. See F. Dubois, N.
Petit and P. Rouchon (1999).



Steady-state controllability

D1

u



F. Dubois, N. Petit and P. Rouchon proved in 1999 that for the linearized
system around the equilibrium H = He, speed=0, position of the tank at
the origin, the steady-state controllability is valid for every time T such that

T >

√

LHe

g
.(7)

However we have the following theorem

Theorem (JMC, A. Koenig and H.-M. Nguyen (2021))

For every T < 2
√

LHe
g the steady-state controllability with small (for the

H3/2-norm) control does not hold in time T even if the two steady states
are arbitrary close but different.

Remark

The steady-state controllability holds for large enough time (JMC (2002)).
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A quantum particle in a moving box

(Suggested by P. Rouchon)
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Local (“null”) controllability
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Global controllability: From the first eigenfunction to the

second one
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Controllability results

Theorem

The steady-state motion of the box for the linearized control system
around the first eigenfunction holds in small time: P. Rouchon (2003).
However this result does not hold for the (nonlinear) system JMC
(2006) for small controls and arbitrary small but not 0 displacement.

Large time local controllability: Without (S,D): K. Beauchard
(2005); with (S,D): K. Beauchard and JMC (2006),

Large time controllability between eigenfunctions: K. Beauchard and
JMC (2006),

Large time global controllability: V. Nersesyan (2008).



Not STLC: Notations

1

x

ψ(t, x)

D

ψ



Not STLC: Equations and definitions

Let ε ∈ (0, 1]. Let u : (0, T ) → R be such that

|u(t)| < ε, t ∈ (0, T ).(8)

Let ψ1(t, x) = eiλ1tϕ1(x). Let (ψ, S,D) be the solution of the Cauchy
problem (the control system (P. Rouchon))

iψt = −ψxx − u(t)xψ, (t, x) ∈ (0, T ) × (−1, 1),(9)

ψ(t,−1) = ψ(t, 1) = 0, t ∈ (0, T ),(10)

Ṡ(t) = u(t), Ḋ(t) = S(t), t ∈ (0, T ),(11)

ψ(0, x) = ψ1(0, x), x ∈ (−1, 1),(12)

S(0) = 0, D(0) = 0.(13)

We assume that S(T ) = 0. Let θ : [0, T ]× (−1, 1) → C be defined by

θ(t, x) := eiλ1tψ(t, x), (t, x) ∈ (0, T ) × (−1, 1).(14)



Not STLC: A quantity with a sign whatever is the control

One defines V (t) := −i+ i
∫ 1
−1 θ(t, x)ϕ1(x). Simple computations show

that

V (t) =

∫ t

0
S(τ)V0(τ)dτ +

∫ t

0
S(τ)2V1(τ)dτ(15)

with

V0(τ) := 2i

∫ 1

−1
θ(τ, x)ϕ1x(x)dx, V1(τ) := − i

2

∫ 1

−1
θt(τ, x)x

2ϕ1(x)dx.

Standard estimates lead to

V0(t) = S(t) +O(‖S‖L1(0,t) + ε‖S‖L2(0,T ) + ε|S(t)|),(16)

V1(t) = O(ε).(17)

... Hence the real part of V (t) is positive for t small enough and S 6≡ 0 on
[0, t]. Typical obstruction: a quantity which should be unsigned has a sign
whatever is the control. It is very classical for finite dimensional control
systems.



A Burgers control system

Let us consider the following Burgers control system (introduced by S.
Guerrero)

{

yt − yxx + yyx = u(t), t ∈ [0, T ], x ∈ [0, L],
y(t, 0) = 0, y(t, L) = 0, t ∈ [0, T ],

(18)

where, at time t, the state is y(t, ·) ∈ L2(0, L) and the control is u(t) ∈ R.

Theorem (F. Marbach (2018))

The control system (18) is not small-time locally controllable.

Marbach’s proof relies on scaling, power series expansions and new
quadratic estimates leading to a quantity which should be unsigned has a
sign whatever is the control.



Two other examples

Obstruction to STLC for

1 1D Schrödinger equations with bilinear controls (K. Beauchard and M.
Morancey (2014))

2 A nonlinear parabolic equation (K. Beauchard and F. Marbach
(2020)).

(Of course there are also classical obstructions to STLC when there is a
finite speed of propagation. However there are of a different nature.) In all
these cases the obstruction to STLC relies on a quantity which should be
unsigned has a sign whatever is the control. The difficult part it to find this
quantity and prove that it has a sign.



Main novelties of our obstruction to STLC for KdV

This is the first case dealing with boundary controls. In our case one
does not know what are the iterated Lie brackets even heuristically.
Let us take this opportunity to point out that, even if they are
expected to not leave in the state space (see JMC (2007)), that would
be very interesting to understand what are these iterated Lie brackets.

It sounds difficult to perform the change of time-scale introduced by
F. Marbach (2018) for a Burgers control system in our situation.
Indeed this change will also lead to a boundary layer. However one can
no longer use the maximum principle to study this boundary layer.
Moreover if the change of time-scale, if justified, allows simpler
computations, the advantage for not using it might be to get better or
more explicit time for the obstruction to small-time local
controllability.

The linear drift term of the linearized control system is neither
self-adjoint nor skew-adjoint. Moreover its eigenvalues and
eigenfunctions are not explicit.
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A toy example

Let us consider the finite dimensional control system

(19) ẏ1 = u, ẏ2 = y3, ẏ3 = −y2 + 2y1u,

where the state is (y1, y2, y3) ∈ R
3 and the control is u ∈ R. The linearized

control system of our toy control system around (0, 0) ∈ R
3 × R is

(20) ẏ1 = u, ẏ2 = y3, ẏ3 = −y2,

which is clearly not controllable. An obstruction to small-time local
controllability of our toy control system (19) can be obtained by pointing
out that if (y, u) : [0, T ] → R

3 ×R is a trajectory of the toy control system
(19) such that y(0) = 0, then

y2(T ) =

∫ T

0
cos(T − t)y21(t)dt,(21)

y3(T ) = y1(T )
2 −

∫ T

0
sin(T − t)y21(t)dt.(22)



Hence,

y2(T ) ≥ 0 if T ∈ [0, π/2](23)

y3(T ) 6 0 if T ∈ [0, π] and y1(T ) = 0,(24)

which both show that our toy control system is not small-time locally
controllable. More precisely, using (24), is not locally controllable in time
T ∈ [0, π] ((23) gives only an obstruction for T ∈ [0, π/2]). For the toy
control system one knows that it is locally controllable in a large enough
time and the optimal time for local controllability is also known: this
control system is locally controllable in time T if and only if T > π.
Moreover, if there are higher order perturbations (with respect to the
weight (r1, r2, r3) = (1, 2, 2) for the state and 1 for the control) one can
still get an obstruction to small-time local controllability by pointing out
that the two previous obstructions respectively imply the following
coercivity properties



∀T ∈ (0, π/2), ∃δ > 0 s. t. y2(T ) ≥ δ|u|2H−1(0,T ),(25)

∀T ∈ (0, π], ∃δ > 0 s. t. (y1(T ) = 0 ⇒ y3(T ) 6 −δ|u|2H−2(0,T )).(26)

Note that inequality (25) does not require any condition on the control,
while (26) requires that the control is such that y1(T ) = 0. On the other
hand it is (26) which gives the largest time for the obstruction to local
controllability in time T : (25) gives an obstruction for T ∈ [0, π/2), while
(26) gives an obstruction for T ∈ [0, π], which in fact optimal as mentioned
above.

Remark

The fact that our toy system is not STLC follows from a necessary
condition due to H. Sussmann (1983) relying on iterated Lie brackets. See
also the more general obstructions to STLC due to K. Beauchard and F.
Marbach (2017). Unfortunately iterated Lie brackets are not so well
understood for PDE controls, especially for boundary controls.



Our approach is inspired by the power series expansion method introduced
by JMC and E. Crépeau (2004). The idea of this method is to
search/understand a control u of the form

u = εu1 + ε2u2 + · · · .(27)

The corresponding solution then formally has the form

y = εy1 + ε2y2 + · · · ,(28)

and the non-linear term yyx can be written as

yyx = ε2y1y1,x + · · · .(29)



One then obtains the following systems (x ∈ (0, L) and t ∈ (0, T ))

(30)







y1,t(t, x) + y1,x(t, x) + y1,xxx(t, x) = 0,
y1(t, 0) = y1(t, L) = 0,
y1,x(t, L) = u1(t),

(31)







y2,t(t, x) + y2,x(t, x) + y2,xxx(t, x) + y1(t, x)y1,x(t, x) = 0,
y2(t, 0) = y2(t, L) = 0,
y2,x(t, L) = u2(t).



Let us recall that for the local controllability in large time the idea (JMC
and E. Crépeau (2004), E. Cerpa (2007) and E. Cerpa and E. Crépeau
(2009) is then to find u1 and u2 such that, if y1(0, ·) = y2(0, ·) = 0, then
y1(T, ·) = 0 and the L2(0, L)-orthogonal projection of y2(T ) on M is a
given (non-zero) element in M. In JMC and E. Crépeau an expansion up
to the order 3 is necessary since y2 belongs to the orthogonal space of M
in this case. The three papers rely on contradiction arguments using the
structure of the KdV systems.



Here instead of using a contradiction argument, the strategy is to
characterize all possible u1 which steers 0 at time 0 to 0 at time T . This is
done by taking the Fourier transform with respect to time of the solution
y1 and applying Paley-Wiener’s theorem. We then prove, in the case
2k + l 6= 3N \ {0}, if the time T is sufficiently small, y2(T, ·) has to leave
in some open half-space if u1 6= 0.



Notations

For z ∈ C, let (λj)16j63 =
(

λj(z)
)

16j63
be the three solutions repeated

with the multiplicity of

(32) λ3 + λ+ iz = 0.

Set

(33) Q(z) :=
3

∑

j=1

(λj+1−λj)eλjL+λj+1L =





1 1 1
eλ1L eλ2L eλ3L

λ1e
λ1L λ2e

λ2L λ3e
λ3L



 ,

(34) P (z) :=
3

∑

j=1

λj(e
λj+2L − eλj+1L) = det





1 1 1
eλ1L eλ2L eλ3L

λ1 λ2 λ3



 ,

with the convention λ4 = λ1.



Characterization of the controls steering the linearized

control system from 0 to 0

Proposition

Let L > 0, T > 0, and u ∈ L2(−∞,+∞). Assume that u has a compact
support included in [0, T ], and u steers the linearized control system from 0
at the time 0 to 0 at the time T . Then û and ûG/H satisfy the
Paley-Wiener conditions

û and ûG/H are entire functions,(35)

and

|û(z)| +
∣

∣

∣

∣

ûG(z)

H(z)

∣

∣

∣

∣

≤ CeT |ℑ(z)|,(36)

for some positive constant C.



Some definitions

Let k, l ∈ N \ {0} be such that be such that

(37) L = 2π

√

k2 + kl + l2

3
.

Let us define

η1 = −2πi

3L
(2k + l), η2 = η1 +

2πi

L
k, η3 = η2 +

2πi

L
l,(38)

p =
(2k + l)(k − l)(2l + k)

3
√
3(k2 + kl + l2)3/2

,(39)

E :=
40π3

3L3
(eη1L − 1)ikl(k + l),(40)

ϕ(x) :=

3
∑

j=1

(ηj+1 − ηj)e
ηj+2x for x ∈ [0, L], with η4 := η1,(41)

Ψ(t, x) := ℜ(Eϕ(x)e−ipt).(42)



Some properties

(E 6= 0) ⇔ (2k + l 6∈ 3N),(43)

(Ψ(0, ·) 6= 0) ⇔ (E 6= 0),(44)

Ψt +Ψx +Ψxxx = 0,(45)

Ψ(t, 0) = Ψ(t, L) = Ψx(t, 0) = Ψx(t, L) = 0.(46)



Coercivity

Proposition

If E 6= 0, there exists T∗ > 0 and C > 0 such that, for any (real)
u ∈ L2(−∞,+∞) with u(t) = 0 for t 6∈ (0, T∗) and y(T∗, ·) = 0 where y is
the unique solution of the linearized KdV control system starting from 0 at
time 0 and using the control u, we have

(47)

∫ T∗

0

∫ L

0
y2(t, x)Ψx(t, x)dxdt ≥ C‖u‖2

H−2/3(R)
.

This is one of the main steps of our proof of the obstruction to small time
local controllability.



Obstruction to the small-time local controllability of the

power expansion up to the order 2

y = εy1 + ε2y2 + . . . , y1 being the order 1, y2 being the order 2,(48)

u = εu1 + ε2u2, u1 being the order 1, u2 being the order 2.(49)

We have

y1t + y1x + y1xxx = 0, y1(t, 0) = y1(t, L) = 0, y1x(t, L) = u1(t),(50)

y2t + y2x + y2xxx = −y1y1x, y2(t, 0) = y2(t, L) = 0, y2x(t, L) = u2(t),
(51)

We require that y1(0, x) = y1(T
∗, x) = 0. So u1 steers the linearized

control system from 0 to 0, as u in the previous proposition. Allpying this
proposition one gets that

(52)

∫ T∗

0

∫ L

0
y21(t, x)Ψx(t, x)dxdt ≥ C‖u‖2

H−2/3(R)
.



However multiplying (51) by Ψ, using the equation and the boundary
conditions satisfies by Ψ (see above) and integration by parts on gets that
the left hand side of the previous inequality is

∫ L

0
y2(T

∗, x)Ψ(T ∗, x)dx −
∫ L

0
y2(0, x)Ψ(0, x)dx.(53)

Hence

∫ L

0
y2(T

∗, x)Ψ(T ∗, x)dx−
∫ L

0
y2(0, x)Ψ(0, x)dx ≥ C‖u‖2

H−2/3(R)
(54)

which gives an obstruction to the null-controllability of the order 2 if
Ψ(0, ·) 6= 0, i.e. if 2k + l 6∈ 3N. Moreover it gives an inequality which is
crucial to deal with the remaining terms.
It remains to indeed take care of the remaining terms. Not an easy task in
fact. However when we are confident that something should work it is
often a question of time (may be large time...) to prove it. We finally
succeed to perform it.
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