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Introduction

Differential equation networks (DENs), or quantum graphs, are
metric graphs with differential equations on edges coupled by
certain vertex matching conditions.

These models play a fundamental role in many problems of science
and engineering:

The classical problem is the problem of oscillations of the flexible
structures of strings, beams, cables.

Recently, quantum graphs were applied to description of
nanostructured materials like ceramic or metallic foams, percolation
networks and carbon and graphene nano-tubes.
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Graphs

Fig. 1: A tree graph Fig. 2: A graph with cycles
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Metric graphs

Let Ω(V ,E ) be a finite, connected graph, V = {vi : i ∈ I} is the
set of vertices; E = {ej : j ∈ J} is the set of edges.
By E (vi ) we denote the set of the edges incident to vi :
E (vi ) = {ej : j ∈ J(vi )}.
The set Γ := {vi ∈ V : |J(vi )| = 1} plays the role of the graph
boundary.

A graph is called a metric graph if every edge ej ∈ E is identified
with an interval (0, lj) with a positive length lj .
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Quantum graphs

The graph Ω determines the Hilbert space H := L2(Ω).
We define the space H1 of continuous functions y on Ω such that
yj := y |ej ∈ H1(ej) ∀j ∈ J. Let H−1 be the dual space of H1.
We introduce the space H2 of continuous functions y on Ω such
that yj ∈ H2(ej) ∀j ∈ J, and∑

j∈J(vi )

∂yj(vi ) = 0 ∀i ∈ I . (1)

Here ∂yj(vi ) denotes the derivative of y at the vertex vi taken
along the edge ej in the direction outwards the vertex. Vertex
conditions (1) (together with continuity at v) are called the
standard or Kirchhoff-Neumann (KN) conditions for the internal
vertices. The continuity conditions are

yj(vi )− yk(vi ) = 0 ∀j , k ∈ J(vi ), ∀i ∈ I . (2)
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Quantum graphs

Let q be a real valued function (potential) such that q|ej ∈ C [0, lj ].
We define the Schrödinger operator on the graph Ω as the
operator L = − d2

dx2 + q in H with the domain H2.

Changing q we change the operator L and, therefore, its spectrum
and its multiplicity σ(Ω, q). The maximal possible multiplicity
of an eigenvalue of L, denoted by σ(Ω), is very important for
control and inverse problems on graphs.

The theory of PDEs on graphs started with pioneering papers by
Lumer, von Below, Ali Mehmeti, and Nicaise in 1980-ies.

Control, observation and identification problems for DENs were
studied almost exclusively on trees, see monographs (Lagnese,
Leugering and Schmidt 1994; Avdonin and Ivanov 1995; Dáger and
Zuazua 2006) and surveys (Avdonin 2008; Zuazua 2013).
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It is known that the IBVP for the wave equation on a tree graph is
exactly controllable if the controls act at all or at all but one of the
boundary vertices.

or

The wave equation on graphs with cycles is never exactly
controllable from the boundary. It may be spectrally controllable,
but this property is very unstable with respect to small
perturbations of the system parameters.
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Observation problem

We consider the following IBVP:

wtt − wxx + q(x)w = 0 in {Ω \ V } × (0,T ), (3)

wj(vi , t) = wk(vi , t) for j , k ∈ J(vi ), i ∈ I , t ∈ [0,T ], (4)∑
j∈J(vi )

∂wj(vi , t) = 0 at each vertex i ∈ I , t ∈ [0,T ], (5)

w |t=0 = w0, wt |t=0 = w1 in Ω. (6)

Here T > 0, w0 ∈ H, w1 ∈ H−1. Note that (5) includes the
boundary condition, ∂w |Γ = 0. Using the Fourier method, one can
show, similarly to (Avdonin and Nicaise 2015), that that for any
i ∈ I , j ∈ J,

w(vi , ·) ∈ L2(0,T ), ∂wj(vi , ·) ∈ H−1(0,T ) (7)
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Observation problem

We define a set of active vertices V ∗ = {vi : i ∈ I ∗} as a subset of
V , where we put observers for the trace w(v , ·). For each vertex vi
we define a set of active edges E ∗(vi ) as a subset of E (vi ), where
we put observers for directional derivatives
∂wj(vi , ·), j ∈ J∗(vi ) ⊂ J(vi ). Note that J∗(vi ) may be empty.
Let E ∗ := ∪i∈I E ∗(vi ) and J∗ := ∪i∈I J∗(vi ). We call {V ∗,E ∗} the
active set. We say that the system (3)–(6) with the active set
{V ∗,E ∗} is (exactly) observable in time T if there is a positive
constant C , independent of w0,w1, such that∑
i∈I∗
‖w(vi , ·)‖2

L2(0,T )+
∑
j∈J∗
‖∂wj(vi , ·)‖2

H−1(0,T ) ≥ C
{
‖w0‖2

H + ‖w1‖2
H−1

}
(8)

for every w0 ∈ H, w1 ∈ H−1.
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Control problem

utt − uxx + q(x)u = 0 in {Ω \ V } × (0,T ), (9)∑
j∈J(vi )

∂uj(vi , t) =

{
f Ni (t), i ∈ I ∗,

0, i ∈ I \ I ∗,
(10)

{
uj(vi , t)− uk(vi , t) = f Dj (t), i ∈ I , j ∈ J∗(vi ), k ∈ Jc(vi ),

uj(vi , t)− uk(vi , t) = 0, i ∈ I , j , k ∈ Jc(vi ),

(11)
u|t=0 = ut |t=0 = 0 in Ω. (12)

We assume that f Ni ∈ L2(0,T ), i ∈ I ∗; f Dj ∈ H1
∗ (0,T ), j ∈ J∗.

The space of controls L2(0,T ;R|I∗|)× H1
∗ (0,T ;R|J∗|) =: FT .

The system (9)–(12) is called exactly controllable in time T if
{(uf(·,T ), uf

t(·,T )) : f ∈ FT} = H1 ×H.
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Multiplicity of the spectrum

How many controls we need for controllability?

ut = Au + Bf , f (t) ∈ Rm

ck = 〈f , ek〉L2(0,T ;Rm), ek(t) = (B∗ϕk) eλk t , k = 1, . . . , n.

Number of controls should be greater than or equal to the
multiplicity of the spectrum of A.

For distributed parameter systems it is a necessary condition of
approximate controllability.

The maximal possible multiplicity of an eigenvalue of
−d2/dx2 + q is denoted by σ(Ω). For trees σ(Ω) = |Γ| − 1 .

(Kac and Pivovarchik 2011)
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The IBVP on a finite interval

{
utt − uxx + q(x)u = 0, 0 < x < l , 0 < t < T

u|t≤0 = 0, u(0, t) = f (t), u(l , t) = 0.
(13)

When T ≤ l ,

uf (x , t) =

{
0, 0 < t < x

f (t − x) +
∫ t

x
w(x , s)f (t − s) ds, x ≤ t.

(14)

Here w(x , t) is a solution to the Goursat problem{
wtt − wxx + q(x)w = 0, 0 < x < t

w(0, t) = 0,w(x , x) = − 1
2

∫ x

0
q(s) ds

(15)
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Shape, velocity and exact controllability

Shape controllability in T = l : for any function φ such that
φ(l) = 0, there exists control function f ∈ H1(0, l) such that
uf (x , l) = φ(x):

φ(x) = f (l − x) +

∫ l

x
w(x , s)f (l − s) ds. (16)

Velocity controllability in T = l : for any function ψ, there exists a
control g such that ugt (x , l) = ψ(x):

ψ(x) = g ′(l − x) +

∫ l

x
w(x , s)g ′(t − s) ds. (17)

Exact controllability in T = 2l : for any φ and ψ, there exists h
such that uh(x , 2l) = φ(x) and uht (x ,T ) = ψ(x).
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Shape/velocity controllability ⇔ solvability of the moment
problems

an =

∫ T

0
f (t) sinωn(T − t) dt, ∀{an} ∈ `2,

bn =

∫ T

0
g(t) cosωn(T − t) dt, ∀{bn} ∈ `2.

We extend f and g to [0, 2T ] : f (2T − t) = −f (t),
g(2T − t) = g(t), and put h(t) = 1

2 [f (t) + g)t)]. Then

an =

∫ 2T

0
h(t) sinωn(T − t) dt, bn =

∫ 2T

0
h(t) cosωn(T − t) dt.

⇔

ãn =

∫ 2T

0
h(t) sinωn(2T−t) dt, b̃n =

∫ 2T

0
h(t) cosωn(2T−t) dt.
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Controllability on trees

Γ1 contains all or all but one boundary vertices.
Let U be a union of disjoint paths (except for the end points) from
a controlled vertex to a point in a finite tree graph Ω such that
∪P∈UP = Ω. We put

T0 = min
U

max
P∈U

length P.

Theorem

For any T ≥ 2T0 and any y ∈ H, z ∈ H−1, there exists f ∈ FT

such that uf (·,T ) = y and uft (·,T ) = z .
For any T ≥ T0 we get either uf (·,T ) = y (shape controllability)
or uft (·,T ) = z (velocity controllability).

(Avdonin and Zhao 2019)
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Union path representation of a tree

Controls act on all boundary
vertices

Controls act on all but one
boundary vertices
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A control problem on a lasso graph

utt − uxx = 0,

u(·, 0) = ut(·, 0) = 0,

∂u1(l , t) = f (t),

u2(0, t)−u1(0, t) = h(t), u3(0, t)−u1(0, t) = 0,
3∑

j=1

∂uj(0, t) = 0.

x = 0x = l x = a

e2

e3

e1

H := L2(Ω). H1 := {y : y |ej ∈ H1(ej), y1(0) = y2(0) = y3(0)}.
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Acyclic orientation

Start with an acyclic orientation
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Placing Dirichlet and Neumann controls on ~Ω
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Path union

Let ~Ω be a DAG of Ω. Let U be a union of directed paths
satisfiing the conditions:

1 The direction of all edges are the same as the direction of all
paths they are on.

2 All paths are disjoint except for the starting and finishing
vertices.

3 Each path begins with an active vertex or active edge.

4 ~Ω = ∪P∈UP.
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Minimal number of controllers

The sharp estimate of the minimal number of controllers κ(Ω)
that guarantees the exact controllability of the wave equation on
the graph for all q.
A cut-vertex is a vertex whose deletion increases the number of
connected components of a graph. Deletion of all cut-vertices
separates Ω into blocks. The blocks sharing only one cut-vertex
with its complement are called pendant blocks. We denote the
number of pendant blocks by β.

κ(Ω) = µ+ 1, if β = 1; κ(Ω) = µ+ β − 1, if β ≥ 2. (18)

Here µ = |E | − |V |+ 1 is the cyclomatic number of Ω.
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Comparing κ(Ω) with σ(Ω)

Let pt be the numbers of boundary vertices for the tree obtained
by contracting all the cycles of the graph into vertices

σ(Ω) = µ+ 1, if Ω is cyclically connected;
σ(Ω) = µ+ pt − 1, if Ω is not cyclically connected.

Since β ≥ pt , κ(Ω) ≥ σ(Ω).

κ(Ω) = σ(Ω) for trees, for a ring, the lasso graph, and in many
other cases.

The talk is based in part on the joint work with Y. Zhao.



Control Theory for DENs

REFERENCES

Avdonin S. (2008), Control problems on quantum graphs, in: “Analysis on Graphs and
Its Applications”, Proceedings of Symposia in Pure Mathematics, AMS, 77, 507–521.

Avdonin S.A. and Ivanov S.A. (1995), Families of Exponentials. The Method of
Moments in Controllability Problems for Distributed Parameter Systems, New York:
Cambridge University Press.
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