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Abstract
In this poster, we prove a logarithmic convexity that reflects an ob-

servability estimate at a single point of time for 1-D heat equation with
dynamic boundary conditions. Consequently, we establish the impulse
approximate controllability for the impulsive heat equation with dy-
namic boundary conditions. Moreover, we obtain an explicit upper
bound of the cost of impulse control. At the end, we present some
numerical tests to validate the theoretical results.

1 Introduction
It is well-known that the heat equation is one of the most sig-
nificant partial differential equations of parabolic type, it is a
model for a large class of physical phenomena which describes
the distribution of heat in a given region over time. In general a
linear heat equation with a control function can be presented as
follows: 

∂tψ −∆ψ = u(x, t)1ω, in Ω× (0, T )

B.C

I.C

(1)

♣ u is the control acting on ω of Ω.
The theory of impulsive differential equations was initiated by

V. D. Mil’man and A. Mishkis in 1960 [2]. Afterward, many
scientists contributed to the enrichment of this theory. For in-
stance K.D. Phung [3] who prove the approximately controlla-
bility for the following impulsive heat equation

∂tψ −∆ψ = 0, in Ω× (0, T )\{τ}
ψ = 0, on ∂Ω× (0, T )

ψ(·, 0) = ψ0, in Ω
ψ(·, τ ) = ψ

(
·, τ−

)
+ 1ωh, in Ω

(2)

Also, We mention A. Khapalov [1] who proved the exact con-
trollability of a class of second-order hyperbolic boundary prob-
lems with impulse controls using the Huygens’ principle.

To better understand this phenomenon of impulses we have
made some simulations for the 1-D heat equation with Dirichlet
boundary conditions
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Figure 1: The instant of pulse is τ = 0.01

Motivated by the above works, our interest is to investigate the
impulse controlled heat equation with dynamic boundary condi-
tions given by

∂tψ(x, t)− ∂xxψ(x, t) = 0, in (a, b)× (0, T )\{τ},
ψ(x, τ ) = ψ

(
x, τ−

)
+ 1ω(x)h(x), in (a, b),

∂tψ(a, t)− ∂xψ(a, t) = 0, on (0, T )\{τ},
∂tψ(b, t) + ∂xψ(b, t) = 0, on (0, T )\{τ},
ψ(a, τ ) = ψ

(
a, τ−

)
,

ψ(b, τ ) = ψ
(
b, τ−

)
,

(ψ(x, 0), ψ(a, 0), ψ(b, 0)) =
(
ψ0(x), c, d

)
, in (a, b),

(3)
where (a, b) ⊂ R is an open interval, T > 0 is the final time,
τ ∈ (0, T ) is an impulse time,

(
ψ0, c, d

)
∈ L2 (a, b)×R2 denotes

the initial data, ψ(·, τ−) denotes the left limit of the function ψ
at time τ , and ω ⋐ (a, b) is a nonempty open subset.

2 Well-posedness
In what follows, we will often use the following real Hilbert
space L2 := L2(a, b)× R2, equipped with the inner product

⟨(u, c, d), (v, c1, d1)⟩ = ⟨u, v⟩L2(a,b) + cc1 + dd1.

The previous system can be presented as the following impulsive
Cauchy problem

(ACP)


∂tΨ(t) = AΨ(t), (0, T ) \ {τ},
△Ψ(τ ) = (1ωh, 0, 0),

Ψ(0) = (ψ0, c, d),

where Ψ := (ψ, ψ (a, ·) , ψ (b, ·)) and △Ψ(τ ) := Ψ (·, τ ) −
Ψ
(
·, τ−

)
. For all Ψ0 := (ψ0, c, d) ∈ L2, the system (ACP)

has a unique mild solution given by

Ψ(t) = etAΨ0 + 1{t≥τ}(t) e
(t−τ )A(1ωh, 0, 0), t ∈ (0, T ).

3 Observability at one point of time

The key lemma that will enable us to prove the impulsive ap-
proximate controllability of the above equation is the following
observability estimate at one point of time.

Lemma 3.1. Let ω ⋐ (a, b) be an open nonempty set. Let ⟨·, ·⟩
denote the standard inner product of L2(a, b)×R2 and ∥·∥ be its
corresponding norm. Then the following logarithmic convexity
estimate holds

∥U(·, T )∥ ≤
(
µe

K
T ∥u(·, T )∥L2(ω)

)β
∥U(·, 0)∥1−β, (4)

where µ,K > 0, β ∈ (0, 1) and U = (u(·, ·), u(a, ·), u(b, ·)) is
the solution of the following system
∂tu(x, t)− ∂xxu(x, t) = 0, in (a, b)× (0, T ),
∂tu(a, t)− ∂xu(a, t) = 0, on (0, T ),
∂tu(b, t) + ∂xu(b, t) = 0, on (0, T ),

(u(x, 0), u(a, 0), u(b, 0)) =
(
u0(x), c1, d1

)
, in (a, b).

(5)

Remark 3.1. We emphasize that (4) is an observability inequal-
ity estimating the whole solution U = (u(·, ·), u(a, ·), u(b, ·)) of
system (5) at terminal time T by only using one internal obser-
vation on the first component u, which is localized in the subset
ω.

4 Approximate impulse controllability

Control theory deals with how an arbitrary initial state can be
directed exactly or approximately close to a given final state us-
ing a set of admissible controls. In this section, we study the
impulse approximate controllability for the system below. Here,
the control function acts on a subdomain ω and at one point of
time τ ∈ (0, T ). Next, we state the main result on approximate
impulse controllability for system (3).

Theorem 4.1. The system (3) is approximate impulse control-
lable at any time T > 0. Moreover, for any ε > 0, the cost of
approximate impulse control satisfies

K(T, ε) ≤ M1e
M2
T−τ

εδ
,

where the positive constants M1, M2 and δ are positive con-
stants.

5 Numerical experiments

Next, we present some numerical tests to illustrate our theoret-
ical results. This will be done by computing the HUM impulse
controls based on a penalized HUM approach combined with a
CG algorithm.
In the numerical tests, we will choose the following values

T = 0.02, τ = 0.01, a = 0, b = 1, ω = (0.2, 0.8) ⋐ (0, 1),

and we consider the initial datum to be controlled as

ψ0(x) =
√
2 sin(πx), x ∈ [0, 1].
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Figure 2: The controlled solution.
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Figure 3: The final state for uncontrolled and controlled solutions.

Figure 4: Numerical results for T = 0.02, τ = 0.01 and tol = 10−3.

We clearly see that the distance ∥Ψ(T )∥ to the target zero de-
creases and the norm of the impulse control ∥h∥L2(ω) increases
as ε diminishes.

Conclusions

In this work, a logarithmic convexity result has been proved for
the 1-D heat equation with dynamic boundary conditions. As
an application, the impulsive approximate controllability for the
system (3) has been established with an explicit bound of the
cost. The proof is based on the Carleman commutator approach.
Afterward, a constructive algorithm has been developed to nu-
merically construct the impulse control of minimal L2-norm.
This has been done by combining a penalized HUM approach
and a CG method. Finally, a numerical simulation has been per-
formed to illustrate the theoretical result of impulse approximate
controllability.
To the best of the authors knowledge, dynamical systems with
impulsive controls have not been much studied numerically,
which opens the doors to many possibilities for dealing with
such problems. This work can be generalized in several ways,
for instance, one would study the case of an infinite number of
impulses or the case of some perturbations as: nonlinearities, de-
lays and non local conditions. One would also change the type
of impulses by considering non-instantaneous impulses. Such
problems would be of much interest to investigate.
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