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Introduction

In this work we present a mathematical model and
simulations of a particular wave energy converter, the
so-called oscillating water column (OWC). In this de-
vice, waves governed by the one-dimensional nonlin-
ear shallow water equations arrive from offshore, en-
counter a step in the bottom and then arrive into a
chamber to change the volume of the air to activate a
turbine, which produce electrical energy. The system
is reformulated as two transmission problems: one is
related to the wave motion over the stepped topogra-
phy and the other one is related to the wave-structure
interaction at the entrance of the chamber. By using
Riemann invariants, and the Lax-Friedrichs scheme we
also get numerical simulations in a simplified case. A
graphical sketch of the configuration of the OWC de-
vice is presented in the following figure
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Figure: Configuration

We consider an incompressible, irrotational, inviscid
and homogeneous fluid in a shallow water regime,
which occurs in the region where the OWC is installed.
The motion of the fluid is governed by the 1D nonlin-
ear shallow water equations (NSW)


∂tζ + ∂xq = 0
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for x ∈ (−l , l1), where ζ(t, x) is free surface elevation,
h(t, x) is the fluid height, ρ is the fluid density, P is the
surface pressure of the fluid and q(t, x) is the horizon-

tal discharge defined by q(t, x) =
∫ ζ(t,x)
−h0 u(t, x , z)dz ,

where u(t, x , z) is the horizontal component of the
fluid velocity vector field. The non-constant pressure
inside the OWC chamber is modelled by considering a
perturbation function Pch(t), which satisfies the ordi-
nary differential equation:
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ζ, Pch(0) = Pch,0,

where ζ(t) is the spatially averaged surface elevation.
The system is completed by considering an initial con-
figuration where the fluid is at rest.

Governing equations

The model proposed here is presented as two trans-
mission problems; the first one governing the dynamic
between the wave motion over a discontinuous topog-
raphy with the wave-structure interaction at the en-
trance of the chamber, and the second one considering
the wave motion in the chamber.
These partial differential equations systems read as:

1. In (−l , 0), h = hs + ζ, P = Patm and∂tζ + ∂xq = 0
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First transmission problem:

l ζx=0− = ζx=0+, qx=0− = qx=0+

2. In (0, l0 − r), h = h0 + ζ, P = Patm and∂tζ + ∂xq = 0
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Second transmission problem:
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3. In (l0 + r , l1), h = h0 + ζ, P = Patm + Pch(t) and∂tζ + ∂xq = 0
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where for an arbitrary function f , we have

Jf K = f|x=l0+r − f|x=l0−r .

The local wellposedness of the transmission problems
above is studied in [2].

Discretizations

By considering Pch(t) = 0, in the following we obtain
a numerical solution of the transmission problems de-
scribed above. To this end, we rewrite the nonlinear
shallow water equations (1) in a compact form by in-
troducing the couple U = (ζe, qe)

T :

∂tU + A(U)∂xU = 0, (2)

where A(U) =

(
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)
.

We remark that, the associated eigenvectors e+(U)
and e−(U) of A(U) are given by

e+(U) = (
√
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, 1)T , e−(U) = (−
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, 1)T .

Hence, by taking the scalar product of (2) and e±(U)

we obtain

∂t(2
√

ghe±
qe
he

)± (
√

ghe±
qe
he

)[∂x(2
√

ghe±
qe
he

)] = 0

and then, we can recast the 1D NSW equations as the
two following transport equations on R and L:

∂tR + λ+(U)∂xR = 0, ∂tL− λ−(U)∂xL = 0.

The finite volume method is a standard discretiza-
tion approach for partial differential equations, espe-
cially those that arise from conservation laws. We first
rewrite equation (2) as the following conservative form

∂tU + ∂x(F (U)) = 0 (3)

with

F (U) = (qe,
1
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e
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)T .

By means of a finite volume approach, the equation
can be discretized as

Um+1
i − Um

i

δt
+

(
Fm
i+1/2 − Fm

i−1/2

)
δx

= 0

where the flux F is discretized with cell centres indexed
as i and cell edge fluxes indexed as i±1/2. The choice
of Fm

i±1/2 depends on the numerical scheme. We con-
sider here the well-known Lax–Friedrichs scheme to
get the discrete flux, with Fm

i = F (Um
i ),

Fm
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1

2
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)
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2δt

(
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)
.

Simulations

Figure 2: Numerical simulation of the transmission
problems at time t = 5 s.
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