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Introduction

In this work we present a mathematical model and
simulations of a particular wave energy converter, the
so-called oscillating water column (OWC). In this de-
vice, waves governed by the one-dimensional nonlin-
ear shallow water equations arrive from offshore, en-
counter a step in the bottom and then arrive into a
chamber to change the volume of the air to activate a
turbine, which produce electrical energy. The system
Is reformulated as two transmission problems: one is
related to the wave motion over the stepped topogra-
phy and the other one is related to the wave-structure
interaction at the entrance of the chamber. By using
Riemann invariants, and the Lax-Friedrichs scheme we
also get numerical simulations in a simplified case. A
graphical sketch of the configuration of the OWC de-
vice is presented in the following figure
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Figure: Configuration

We consider an incompressible, irrotational, inviscid
and homogeneous fluid in a shallow water regime,
which occurs in the region where the OWC is installed.
The motion of the fluid is governed by the 1D nonlin-
ear shallow water equations (NSW)
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for x € (=1, h), where ((t, x) is free surface elevation,
h(t, x) is the fluid height, p is the fluid density, P is the
surface pressure of the fluid and q(t, x) is the horizon-

tal discharge defined by g(t, x) f< (£:2) u(t,x,z)dz,
where u(t, x, z) is the horizontal component of the
fluid velocity vector field. The non-constant pressure
inside the OWC chamber is modelled by considering a
perturbation function Py (t), which satisfies the ordi-
nary differential equation:
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where ((t) is the spatially averaged surface elevation.
The system is completed by considering an initial con-
figuration where the fluid is at rest.

Governing equations

The model proposed here is presented as two trans-
mission problems; the first one governing the dynamic
between the wave motion over a discontinuous topog-
raphy with the wave-structure interaction at the en-
trance of the chamber, and the second one considering
the wave motion in the chamber.

These partial differential equations systems read as:
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First transmission problem:
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Second transmission problem:
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where for an arbitrary function f, we have
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The local wellposedness of the transmission problems
above is studied in [2].

Discretizations

By considering P.,(t) = 0, in the following we obtain
a numerical solution of the transmission problems de-
scribed above. To this end, we rewrite the nonlinear
shallow water equations (1) in a compact form by in-
troducing the couple U = ((, qe) "
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We remark that, the associated eigenvectors e, (U)

and e_(U) of A(U) are given by
de
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Hence, by taking the scalar product of (2) and e, (U)

we obtain
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and then, we can recast the 1D NSW equations as the
two following transport equations on R and L.
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The finite volume method is a standard discretiza-
tion approach for partial differential equations, espe-
cially those that arise from conservation laws. We first
rewrite equation (2) as the following conservative form

.U + d(F(U)) = 0 (3)
with
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By means of a finite volume approach, the equation
can be discretized as
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where the flux F is discretized with cell centres indexed
as i/ and cell edge fluxes indexed as i+1/2. The choice
of F’L/z depends on the numerical scheme. We con-

sider here the well-known Lax—Friedrichs scheme to
get the discrete flux, with F" = F(U™),
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Figure 2: Numerical simulation of the transmission
problems at time t = bs.
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