

Output controllability for Linear Time Invariant systems Baparou Danhane, Jérôme Lohéac and Marc Jungers Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France. Email: baparou.danhane@univ-lorraine.fr

Introduction

Consider for $t \ge 0$ the Linear Time Invariant (LTI) system

 $\dot{x}(t) = Ax(t) + Bu(t).$

• State controllability

Theorem (Criteria)

The system (1) is state to output controllable if and only if one of the following conditions is fulfilled (i) There exists a time T > 0 such that the linear map $E_{\tau}^{o} : C^{0}([0, T]; \mathbb{R}^{m}) \rightarrow \mathbb{R}^{q}$, defined by $E_{T}^{o}(u) = \int_{0}^{t} Ce^{(T-\tau)A} Bu(\tau) d\tau + Du(T) \text{ is surjective.}$ (ii) $\operatorname{rk}\left[D \ CB \ CAB \ \cdots \ CA^{n-1}B\right] = q.$ (Given in [3]) (iii) $\mathcal{K}_T := C \int_0^T e^{tA} B B^T e^{tA^T} dt C^T + D D^T > 0$ for some T > 0. (Also given in [3]) (iv) $\operatorname{rk}(C|D) = q$ and $\operatorname{Im}\begin{pmatrix} C^{\mathsf{T}} \\ D^{\mathsf{T}} \end{pmatrix} \cap \left(\bigoplus_{\lambda \in \sigma(A)} E_{\lambda} \times \{0^{m}\} \right) = \{0\}, \text{ where }$ $E_{\lambda} = \ker(A_{\lambda}^{\top})^{n_{\lambda}} \cap \left(\bigcap_{k=0}^{n_{\lambda}-1} \ker B^{\top}(A_{\lambda}^{\top})^{k}\right), A_{\lambda} = A - \lambda I_{n}$ and n_{λ} , the algebraic multiplicity of λ

Topic very well understood from literature.

Particularity All the state variables are controlled.

Motivation

• What if you do not will to control all the state variables ?

• More generally

in the minimal polynomial of A.
(v)
$$\operatorname{rk}(C|D) = q$$
 and $\operatorname{rk}\begin{pmatrix} K_{\lambda_1} & 0 & \cdots & 0 & (C|D)^{\perp} \\ 0 & K_{\lambda_2} & \cdots & \mathbf{i} & \mathbf{i} \\ \mathbf{i} & \cdots & \cdots & 0 & \mathbf{i} \\ 0 & \cdots & 0 & K_{\lambda_p} (C|D)^{\perp} \end{pmatrix} = (n+m)p$, where $\{\lambda_1, \lambda_2, \cdots, \lambda_p\} = \sigma(A)$,
 $K_{\lambda} = \begin{pmatrix} M_{\lambda} & 0 \\ 0 & I_m \end{pmatrix}$ and $M_{\lambda} = (A_{\lambda}^{n_{\lambda}} | A_{\lambda}^{n_{\lambda}-1} B | \cdots | A_{\lambda} B | B)$.
(vi) $\mathcal{G}_T^o := \int_0^T H_o(T, t) H_o(T, t)^T dt > 0$ for some $T > 0$, where $H_o(T, t) = C \int_t^T e^{(T-\tau)A} B d\tau + D$.

Theorem (Control computation)

Let $(x_0, y_1) \in \mathbb{R}^n \times \mathbb{R}^q$, and assume that system (1) is SOC. For every T > 0 and $u_0 \in \mathbb{R}^m$, the control steering x_0 to y_1 in time T is

$$u(t) = u_0 + \int_0^t H_o(T, \tau)^{\mathsf{T}} \mathrm{d}\tau (\mathcal{G}_T^o)^{-1} (y_1 - Ce^{TA} x_0 - H_o(T, 0) u_0)$$

Furthermore, this control is the unique minimizer of

$$\min \frac{1}{2} \int_0^T |\dot{u}(t)|_m^2 dt$$

Questions:

• Can we reach any benchmark output y_{ref}? • If YES, what is the suitable u to be used?

To answer these questions, Bertram and Sarachik introduced in [1] the notion of **Output controllability.**

Framework: LTI systems

We assume that the output is given by

$$\dot{x}(t) = Ax(t) + Bu(t),$$

$$y(t) = Cx(t) + Du(t).$$

$$(1)$$

$$x(t) \in \mathbb{R}^{n}, \quad u(t) \in \mathbb{R}^{m}, \quad y(t) \in \mathbb{R}^{q}.$$

Discussed notions: State to output controllability.

State to output controllability \mathbb{R}^{q}

 $u \in H^{1}([0, T]; \mathbb{R}^{m}), u(0) = u_{0}, y_{1} = y_{u}(T, x_{0}).$

Application to the cars example.

Consider for $t \ge 0$, system (1) with $f_{\ell} = -\alpha_{\ell}v_{\ell}$ where v_{ℓ} is the speed of car ℓ for $\ell = 1, 2$ and m_{ℓ} stands for the mass of car ℓ . Choosing $m_1 = m_2 = 1$ and $\alpha_1 = \alpha_2 = 1/2$ the system is given by

 $A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & -\frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & -\frac{1}{2} \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & -\frac{1}{2} & 0 & \frac{1}{2} \end{pmatrix} \quad and \quad D = \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 1 & -1 \end{pmatrix}.$

• One can see that this system is state to output controllable in any time T > 0. • Goal: steer the system from $x_0 = (1, 0, 1, 0)^{\top}$ to $y_1 = (2, 0, 0)^{\top}$ in time T = 1. **Applying (2) with** $u_0 = (1, 0)^{\top}$, we get

 $u = (u_1, u_2)^{\mathsf{T}}, u_1 = 1 - u_2, u_2(t) = at + bt^2 + c(e^{\frac{t}{2}} - 1)$ where $a = (254 + 98e - 316e^{\frac{1}{2}})/d$, $b = (105 + 45e - 138e^{\frac{1}{2}})/d$, and $c = (54 - 32e^{\frac{1}{2}})/d$, with $d = 222e - 736e^{\frac{1}{2}} + 610$ Using the matrix \mathcal{K}_{T} , we get $u = (u_{1}, u_{2})^{T}$, $u_{2} = -u_{1}$ and $u_{1}(t) = (2e^{\frac{t}{2}} - e^{\frac{1}{2}} - 1)/(6e^{\frac{1}{2}} - 10)$ for $t \in [0, 1)$ and u(1) = 0.

Two other notions of Output controllability can be found in [2]. In these notions, we discuss how to steer an initial output value to a prescribed output.

References

- J. Bertram and P. Sarachik. "On optimal computer control". *IFAC Proceedings Volumes* 1.1 (1960).
- B. Danhane, J. Lohéac, and M. Jungers. "Characterizations of output controllability for LTI systems". submitted, hal.03083128 (2020).
 - E. Kreindler and P. Sarachik. "On the concepts of controllability and observability of linear systems". IEEE Transactions on Automatic Control 9.2 (1964).

Figure: Continuous output trajectories with our matrix \mathcal{G}_{τ}^{o} .

Figure: Discontinuous output trajectories with the matrix $\mathcal{K}_{\mathcal{T}}$ proposed by Kreindler and Sarachik.

(2)