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Introduction
Consider for t ≥ 0 the Linear Time Invariant
(LTI) system

ẋ(t) = Ax(t) + Bu(t).
• State controllability
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Topic very well understood from literature.
Particularity

All the state variables are controlled.

Motivation
• What if you do not will to control all the
state variables ?
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• More generally

Input u
System
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Questions:
• Can we reach any benchmark output yref ?
• If YES, what is the suitable u to be used?
To answer these questions, Bertram and
Sarachik introduced in [1] the notion of
Output controllability.

Framework: LTI systems
We assume that the output is given by

ẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t) + Du(t). (1)

x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rq.

Discussed notions:
State to output controllability.

State to output controllability

∀x0 • • ∀y1

Rn Rq

∃ (T , u) ?

yu(x0, t)

u continuous and yu(x0,T ) = y1.

Two other notions of Output controllability
can be found in [2]. In these notions, we
discuss how to steer an initial output value to
a prescribed output.

Theorem (Criteria)
The system (1) is state to output controllable if and only if one of the following conditions is
fulfilled

(i) There exists a time T > 0 such that the linear map E o
T : C0([0,T];Rm)→ Rq, defined by

E o
T (u) =

∫ T

0
Ce(T−τ)ABu(τ)dτ + Du(T ) is surjective.

(ii) rk
�

D CB CAB · · · CAn−1B
�

= q. (Given in [3])

(iii) KT := C
∫ T

0
etABB>etA>dt C>+ DD> > 0 for some T > 0. (Also given in [3])

(iv) rk (C |D) = q and Im
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λ

)nλ ∩
�

⋂nλ−1
k=0 ker B>(A>

λ
)k
�

, Aλ = A− λIn and nλ, the algebraic multiplicity of λ
in the minimal polynomial of A.

(v) rk (C |D) = q and rk
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= (n + m)p, where {λ1, λ2, · · · , λp} = σ(A),

Kλ =
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Mλ 0
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(vi) Go
T :=

∫ T

0
Ho(T , t)Ho(T , t)>dt > 0 for some T > 0, where Ho(T , t) = C

∫ T

t
e(T−τ)ABdτ+D.

Theorem (Control computation)
Let (x0, y1) ∈ Rn × Rq, and assume that system (1) is SOC.
For every T > 0 and u0 ∈ Rm, the control steering x0 to y1 in time T is

u(t) =u0+
∫ t

0
Ho(T , τ)>dτ(Go

T )−1
�

y1− CeTAx0 − Ho(T , 0)u0
�

(2)

Furthermore, this control is the unique minimizer of

min
1
2

∫ T

0
|u̇(t)|2mdt

u ∈ H1([0,T ];Rm), u(0) = u0, y1 = yu(T , x0).

Application to the cars example.
Consider for t ≥ 0, system (1) with fℓ = −αℓvℓ where vℓ is the speed of car ℓ for ℓ = 1, 2 and mℓ

stands for the mass of car ℓ. Choosing m1 = m2 = 1 and α1 = α2 = 1/2 the system is given by

A =









0 1 0 0
0 −1

2 0 0
0 0 0 1
0 0 0 −1

2




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

, B =









0 0
1 0
0 0
0 1









, C =





1 0 −1 0
0 1 0 −1
0 −1

2 0 1
2



 and D =





0 0
0 0
1 −1



 .

• One can see that this system is state to output controllable in any time T > 0.
• Goal: steer the system from x0 = (1, 0, 1, 0)> to y1 = (2, 0, 0)> in time T = 1.
Applying (2) with u0 = (1, 0)>, we get

u = (u1, u2)>, u1 = 1− u2, u2(t) = at + bt2 + c(e
t
2 − 1) where a = (254 + 98e − 316e

1
2)/d ,

b = (105 + 45e − 138e
1
2)/d , and c = (54− 32e

1
2)/d , with d = 222e − 736e

1
2 + 610

Using the matrix KT , we get u = (u1, u2)>, u2 = −u1 and u1(t) = (2e
t
2 − e

1
2 − 1)/(6e

1
2 − 10) for

t ∈ [0, 1) and u(1) = 0.
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Figure: Continuous output trajectories with our
matrix Go

T .
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Figure: Discontinuous output trajectories with the
matrix KT proposed by Kreindler and Sarachik.
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