
LATEX TikZposter

Controllability of a bilinear Schrödinger equation by a power series expansion
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Sussman’s example
ẋ1 = u,
ẋ2 = x1,
ẋ3 = x2

2 + x3
1.

(1)

The system (1) is controllable on Span((1, 0, 0), (0, 1, 0)).
Denote by ui the i-th primitive of u vanishing at zero.
What about the third component

x3(T ; u, 0) =

∫ T

0

u2(t)
2dt +

∫ T

0

u1(t)
3dt ?

Definition: E-STLC of (1)

(1) is E-STLC if for all T > 0 and ε > 0, there exists
δ > 0 such that for all data |x0| + |xf | < δ, there
exists u ∈ ET with ‖u‖ET

< ε such that

x(T ; u, x0) = xf .

No W 1,∞ -STLC

Theorem

The system (1) is not W 1,∞-STLC: there exists
A, T ∗ > 0 s. t. for all T ∈ (0, T ∗), there exists ε > 0
s. t. for all u ∈ W 1,∞(0, T ) with ‖u‖W 1,∞(0,T ) < ε,

x3(T ; u, 0) ≥ A

∫ T

0

u2(t)
2dt > 0.

By integrations by parts, when ‖u′‖L∞(0,T ) is small,∫ T

0

u1(t)
3dt =

∫ T

0

u2(t)
2u′(t)dt = o

(∫ T

0

u2(t)
2dt

)
.

So, if ‖u′‖L∞(0,T ) is small enough,

x3(T ; u, 0) ≥
(
1− ‖u′‖L∞(0,T )

) ∫ T

0

u2(t)
2dt > 0.

L∞-STLC

Theorem (Sussman, 1983)

The system (1) is L∞-STLC.

The cubic term wins for controls of the form:

uλ(t) =
√
λφ′′

(
t

λ

)
, λ > 0.

Size of the controls:

‖uλ‖L∞(0,T ) ≈
√
λ� 1, ‖u′λ‖L∞(0,T ) ≈

1√
λ
� 1.

Then, the third component of (1) is given by

x3(T ; uλ, 0) = λ
11
2

∫ 1

0

φ′(θ)3dθ + λ6

∫ 1

0

φ(θ)2dθ.

Taking λ = |a| 211 and
∫ 1

0 φ
′(θ)3dθ = sign(a),

x3(T ; ua, 0) = a + o(a).

Schrödinger equation

{
i∂tψ(t, x) = −∂2

xψ(t, x)− u(t)µ(x)ψ(t, x), (t, x) ∈ (0, T )× (0, 1),
ψ(t, 0) = ψ(t, 1) = 0, t ∈ (0, T ).

(Schro)

This is a bilinear control system where the state is ψ and u denotes a scalar control.

Definition: STLC around the ground state in X with controls in E

(Schro) is STLC if for all T > 0 and ε > 0, there exists δ > 0 such that for all
(ψ0, ψf) in X with ‖ψ0 − ϕ1‖X < δ and ‖ψf − ϕ1e

−iλ1T‖X < δ, there exists
u ∈ L2(0, T ) ∩ ET with ‖u‖ET

< ε such that

ψ(T ; u, ψ0) = ψf .

To study the STLC of (Schro), perform a power series expansion,

ψ(t) ≈ ϕ1e
−iλ1t + Lin + Quad + Cub + · · · .

The first-order term Ψ

{
i∂tΨ(t, x) = −∂2

xΨ(t, x)− u(t)µ(x)ϕ1(x)e−iλ1t, (t, x) ∈ (0, T )× (0, 1),
Ψ(t, 0) = Ψ(t, 1) = 0, t ∈ (0, T ).

(Lin)

The solution can be computed explicitly as

Ψ(T ; u, 0) = i
+∞∑
j=1

〈µϕ1, ϕj〉
∫ T

0

u(t)ei(λj−λ1)tdtϕje
−iλjT .

Proposition: Controllability of the linearized equation (Lin)

Let (p, k) ∈ N2 and J a subset of N∗. If µ is inH2(p+k)+3((0, 1),R) with µ(2n+1)(0) =
µ(2n+1)(1) = 0 for all n = 0, . . . , p− 1 such that there exists c > 0 such that

∀j ∈ J, |〈µϕ1, ϕj〉| ≥
c

j2p+3
, (2)

then (Lin) is controllable in projection in H
2(p+k)+3
(0) (0, 1) with controls in

Hk
0 (0, T ) with the same control map.

STLC in projection

Theorem: STLC in projection of (Schro)

Let µ inH2(p+k)+3((0, 1),R) with µ(2n+1)(0) = µ(2n+1)(1) = 0 for all n = 0, . . . , p−1
and satisfying (2). Then, (Schro) is STLC in projection around the ground

state in H
2(p+m)+3
(0) (0, 1) with controls in Hm

0 (0, T ) for every m ∈ {0, . . . , k} with
the same control map.

Span (ϕj; j ∈ J)

ψ0•
ψf
•

ψ(T )•

>
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The second-order term ξ

{
i∂tξ(t, x) = −∂2

xξ(t, x)− u(t)µ(x)Ψ(t, x), (t, x) ∈ (0, T )× (0, 1),
ξ(t, 0) = ξ(t, 1) = 0, t ∈ (0, T ).

(Quad)

One can compute

〈ξ(T ; u, 0), ϕKe
−iλ1T〉 =

∫ T

0

u(t)

∫ t

0

u(τ )hT (t, τ )dτdt.

Proposition

If hT is in C2n(R2,C), then for all u ∈ L1(0, T ),∫ T

0

u(t)

∫ t

0

u(τ )hT (t, τ )dτdt = −i
n∑
p=1

Ap
K

∫ T

0

up(t)
2ei(λK−λ1)(t−T )dt + (. . .).

Proposition: Coercivity of the quadratic term

If A1
K = · · · = An−1

K = 0 and An
K 6= 0, then there exists T ∗ > 0 such that for all T ∈ (0, T ∗),

− sign(An
K)=〈ξ(T ), ϕKe

−iλ1T〉 ≥ |A
n
K|

4

∫ T

0

un(t)2dt + (. . .).

Quadratic obstructions

Proposition: estimate of the cubic remainder

There exists C > 0 such that for all u ∈ H2n−3(0, T ),

〈(ψ − ψ1 − Ψ− ξ)(T ), ϕKe
−iλ1T〉 ≤ C‖u1‖3

L2 ≤ C
(
‖u(2n−3)‖L2 + T−2n+3‖u‖L2

)
‖un‖2

L2.

Theorem: No STLC for regular controls because of drifts

Let (K,n) ∈ N∗2. Assume that µ satisfies Hyp(K,n). If n ≥ 2 (resp. n = 1), then (Schro)
is not H2n−3-STLC (resp. not W−1,∞-STLC): there exists C,A, T ∗ > 0 such that for all
T ∈ (0, T ∗), there exists ε > 0 such that for all u ∈ H2n−3(0, T ) (resp. u ∈ L2(0, T )) with
‖u‖H2n−3(0,T ) ≤ ε (resp. ‖u1‖L∞(0,T ) ≤ ε), then the solution satisfies

− sign(An
K)=〈ψ(T ; u, ϕ1), ϕKe

−iλ1T〉 ≤ A‖un‖2
L2(0,T ) − C‖(ψ − ψ1)(T )‖2

L2(0,1).

Positive STLC result despite a drift!

Theorem

In the setting of the third drift,

• (Schro) is not H3-STLC because of a drift quantified by the H−3 norm of the control.

•But (Schro) is H2-STLC thanks to the cubic term despite a quadratic drift.

Span (ϕj; j ∈ N∗ − {K})

Span (ϕK)

ψ0•

ψf•
× ×>

STLC in proj

small error

>
cu
b
ic
te
rm

small error
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Regular controls

 quadratic wins!

I

Less regular
controls
 cubic wins!

I
I

(Lin) controllable ⇒ (Schro) STLC

Controllability along ϕK when 〈µϕ1, ϕK〉 = 0?

I

u 7→ 〈Quad, ϕK〉 is coercive?

For regular controls, Cub = o(Quad)

I

For controls less regular, Quad = o(Cub)


