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Motivation
The aim of this work is to use an integral action and an output feedback
control law to solve to the output regulation problem of a linear
Korteweg-de-Vries (KdV) system subject to a distributed disturbance.

Problem statement
Consider the Korteweg-de Vries equation

wt + wx + wxxx = d(x), (t, x) ∈ R+ × [0, L]

w(t, 0) = w(t, L) = 0, t ∈ R+

wx(t, L) = u(t), t ∈ R+

w(0, x) = w0(x), x ∈ [0, L],

(1)

u(t) ∈ R is a control d ∈ L2(0, L) is an unknown disturbance.

Question
Assume the output is y(t) := wx(t, 0). Is it possible to design an
output feedback law u(t) := f (wx(t, 0)) such that:

lim
t→+∞

|y(t)− r | = 0,

where r is a given reference, and despite the disturbance ?

A finite-dimensional example

ẇ(t) = u(t) + d ,

w(t) ∈ R, u is the control, d is a constant disturbance.
How can one design a feedback u(t) = f (w(t)) such that

lim
t→+∞

|w(t)− r | = 0, where r is a given reference ?

Obstruction
Static feedback-laws are not enough. Indeed, if
u(t) = −k(w(t)− r), then one has

|w(t)− r |2 ≤ |w(0)− r)|2e−(k−ε)t +
1− e−(k−ε)t

ε(k − ε)
d 2

with k > 0 and ε > 0 such that k − ε > 0. This mean that the
feedback u is not robust with respect to the disturbance d .

A simple solution known for a long time to this problem is to add an
integral term which also uses the information of the previous
disturbance and absorbs this disturbance.

The integral action principle
PI controller ẇ(t) = − kp(w(t)︸ ︷︷ ︸

proportional action

− kiz(t)︸ ︷︷ ︸
integral action

+d ,

ż(t) = w(t)− r

• The proportional action stabilizes w .

• The integral action modifies the equilibrium points.

Stability and Observability properties

Assuming that L /∈ N :=

{
2π
√

k2+kl+l2

3 |k, l ∈ N
}

, then, when u = 0

and d = 0 one has
1 the origin of (1) is globally exponentially stable [Rosier, 1997]
2 the output y(t) = wx(t, 0) is exactly observable [Rosier, 1997].

Main result
The open-loop is stable ⇒ no need of a proportional action.

wt + wx + wxxx = d(x), (t, x) ∈ R+,

w(t, 0) = w(t, L) = 0, t ∈ R+,

wx(t, L) = kz(t), t ∈ R+

ż(t) = y(t)− r , t ∈ R+

w(0, x) = w0(x), z(0) = z0, x ∈ [0, L].

Main result
Notation: w∞, z∞ are the equilibrium points.
D(A) := {z ,w ∈ R× L2(0, L) | w(0) = w(L) = 0, w ′(L) = z}.

Theorem
Let k ∈ (0, k?). Then, for any (d , r) ∈ L2(0, L)× R:

1. There exist ν,C > 0 such that, for all (z0,w0) ∈ R× L2(0, L), and
for all t ≥ 0

‖(z ,w)− (z∞,w∞)‖L2×R ≤ Ce−νt‖(z0,w0)− (z∞,w∞)‖L2×R
2. The output y is regulated towards the reference r . In other

words, for any (z0,w0) ∈ D(A)

lim
t→+∞

|wx(t, 0)− r | = 0.

for any strong solution.

Proof
I. Build a ISS-Lyapunov functional for the KdV equation.

When u = d = 0, we recall that E (w) := 1
2‖w‖

2
L2 satisfies:

d

dt
E (w) = −|wx(t, 0)|2 = −|y(t)|2.

Then, nonpositivity is ensured but the right hand side depends
only on the output.

⇒ It is a weak Lyapunov functional.
Following [Praly, 2019], we strictify E with an observer.

Strictification ?
Consists in modifying a weak Lyapunov functional to make it
strict ([Malisoff & Mazenc, 2009], [Prieur & Mazenc, 2012]).

Using the bacsktepping method based on the Fredholm transform, one
proves the existence of p ∈ L2(0, L) such that the observer ŵ{

ŵt + ŵx + ŵxxx + p(x)[y(t)− ŵx(t, 0)] = 0

ŵ(t, 0) = ŵ(t, L) = ŵx(t, L) = 0.

converge to w in the nominal condition. Consider w̃ := w − ŵ
which satisfies {

w̃t + w̃x + w̃xxx + p(x)w̃x(t, 0) = d(x)

w̃(t, 0) = w̃(t, L) = 0, ŵx(t, L) = u(t).
(2)

One proves the existence of a ISS Lyapunov functional U for (2). Then

d

dt
U(w̃) ≤ −λU(w̃) + |u(t)|2 + ‖d‖2

L2.

We rewrite (1) as follows
wt + wx + wxxx + p(x)wx(t, 0)− p(x)wx(t, 0) = d(x)

w(t, 0) = w(t, L) = 0,

wx(t, L) = u(t).

Then, one has

d

dt
U(w) ≤ −λU(w) + |u(t)|2 + 2‖p‖2

L2|wx(t, 0)|2 + 2‖d‖2
L2.

Recall that
d

dt
E (w) ≤ E (w)− |wx(t, 0)|2 + |u(t)|2 +

1

2
‖d‖2

L2,

then choosing V (w) := E (w) + aU(w) with a = 1
2‖p‖2

L2
, one has

d

dt
V (w) ≤ −λ̃U(w) + σ̃|u(t)|2 + γ‖d‖2

L2

II. Use the forwarding method [Mazenc & Praly, 1996], based on a
linear operatorM : L2(0, L)→ R:

W (w , z) = V (w) + b|z −Mw |2.
III. Select the gains.
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