ISS Lyapunov strictification via observer design and integral action control for a Korteweg-de Vries equation

Ismaila Balogoun ${ }^{1}$ Swann Marx ${ }^{1}$ Daniele Astolfi ${ }^{2}$
${ }^{1}$ LS2N, Ecole Centrale de Nantes and CNRS UMR 6004, Nantes, France ${ }^{2}$ Université Lyon 1 CNRS UMR 5007 LAGEPP, France
November 15, 2021

Motivation

The aim of this work is to use an integral action and an output feedback control law to solve to the output regulation problem of a linear Korteweg-de-Vries (KdV) system subject to a distributed disturbance.

Problem statement

Consider the Korteweg-de Vries equation

$$
\left\{\begin{array}{l}
w_{t}+w_{x}+w_{x x x}=d(x),(t, x) \in \mathbb{R}_{+} \times[0, L] \tag{1}\\
w(t, 0)=w(t, L)=0, t \in \mathbb{R}_{+} \\
w_{x}(t, L)=u(t), t \in \mathbb{R}_{+} \\
w(0, x)=w_{0}(x), x \in[0, L],
\end{array}\right.
$$

$u(t) \in \mathbb{R}$ is a control $d \in L^{2}(0, L)$ is an unknown disturbance.

Question

Assume the output is $y(t):=w_{x}(t, 0)$. Is it possible to design an output feedback law $u(t):=f\left(w_{x}(t, 0)\right)$ such that:

$$
\lim _{t \rightarrow+\infty}|y(t)-r|=0,
$$

where r is a given reference, and despite the disturbance ?

$$
\begin{aligned}
& \text { A finite-dimensional example } \\
& \qquad \dot{w}(t)=u(t)+d
\end{aligned}
$$

$w(t) \in \mathbb{R}, u$ is the control, d is a constant disturbance. How can one design a feedback $u(t)=f(w(t))$ such that $\lim _{t \rightarrow+\infty}|w(t)-r|=0$, where r is a given reference ?

Obstruction

Static feedback-laws are not enough. Indeed, if $u(t)=-k(w(t)-r)$, then one has

$$
\left.|w(t)-r|^{2} \leq \mid w(0)-r\right)\left.\right|^{2} e^{-(k-\epsilon) t}+\frac{1-e^{-(k-\epsilon) t}}{\epsilon(k-\epsilon)} d^{2}
$$

with $k>0$ and $\epsilon>0$ such that $k-\epsilon>0$. This mean that the feedback u is not robust with respect to the disturbance d.
A simple solution known for a long time to this problem is to add an integral term which also uses the information of the previous disturbance and absorbs this disturbance.

PI controller

$$
\left\{\begin{array}{l}
\dot{w}(t)=-\underbrace{k_{p}(w(t)}_{\text {proportional action }}-\underbrace{k_{i} z(t)}_{\text {integral action }}+d, \\
\dot{z}(t)=w(t)-r
\end{array}\right.
$$

- The proportional action stabilizes w.
- The integral action modifies the equilibrium points.

Stability and Observability properties
Assuming that $L \notin \mathcal{N}:=\left\{\left.2 \pi \sqrt{\frac{k^{2}+k \mid+l^{2}}{3}} \right\rvert\, k, l \in \mathbb{N}\right\}$, then, when $u=0$ and $d=0$ one has
(1) the origin of (1) is globally exponentially stable [Rosier, 1997]
(2) the output $y(t)=w_{x}(t, 0)$ is exactly observable [Rosier, 1997].

Main result

The open-loop is stable \Rightarrow no need of a proportional action.

$$
\left\{\begin{array}{l}
w_{t}+w_{x}+w_{x x x}=d(x),(t, x) \in \mathbb{R}_{+} \\
w(t, 0)=w(t, L)=0, t \in \mathbb{R}_{+} \\
w_{x}(t, L)=k z(t), t \in \mathbb{R}_{+} \\
\dot{z}(t)=y(t)-r, t \in \mathbb{R}_{+} \\
w(0, x)=w_{0}(x), z(0)=z_{0}, x \in[0, L]
\end{array}\right.
$$

Main result

Notation: w_{∞}, z_{∞} are the equilibrium points.
$D(\mathcal{A}):=\left\{z, w \in \mathbb{R} \times L^{2}(0, L) \mid w(0)=w(L)=0, w^{\prime}(L)=z\right\}$
Let $k \in\left(0, k^{\star}\right)$. Then, for any $(d, r) \in L^{2}(0, L) \times \mathbb{R}$:

1. There exist $\nu, C>0$ such that, for all $\left(z_{0}, w_{0}\right) \in \mathbb{R} \times L^{2}(0, L)$, and for all $t \geq 0$

$$
\left\|(z, w)-\left(z_{\infty}, w_{\infty}\right)\right\|_{L^{2} \times \mathbb{R}} \leq C e^{-\nu t}\left\|\left(z_{0}, w_{0}\right)-\left(z_{\infty}, w_{\infty}\right)\right\|_{L^{2} \times \mathbb{R}}
$$

2. The output y is regulated towards the reference r. In other words, for any $\left(z_{0}, w_{0}\right) \in D(\mathcal{A})$

$$
\lim _{t \rightarrow+\infty}\left|w_{x}(t, 0)-r\right|=0
$$

for any strong solution.

Proof

I. Build a ISS-Lyapunov functional for the KdV equation.

When $u=d=0$, we recall that $E(w):=\frac{1}{2}\|w\|_{L^{2}}^{2}$ satisfies:

$$
\frac{d}{d t} E(w)=-\left|w_{x}(t, 0)\right|^{2}=-|y(t)|^{2}
$$

Then, nonpositivity is ensured but the right hand side depends only on the output.

\Rightarrow It is a weak Lyapunov functional.

Following [Praly, 2019], we strictify E with an observer.
Consists in modifying a weak Lyapunov functional to make it strict ([Malisoff \& Mazenc, 2009], [Prieur \& Mazenc, 2012]). Using the bacsktepping method based on the Fredholm transform, one proves the existence of $p \in L^{2}(0, L)$ such that the observer \hat{w}

$$
\left\{\begin{array}{l}
\hat{w}_{t}+\hat{w}_{x}+\hat{w}_{x x x}+p(x)\left[y(t)-\hat{w}_{x}(t, 0)\right]=0 \\
\hat{w}(t, 0)=\hat{w}(t, L)=\hat{w}_{x}(t, L)=0
\end{array}\right.
$$

converge to w in the nominal condition. Consider $\tilde{w}:=w-\hat{w}$ which satisfies

$$
\left\{\begin{array}{l}
\tilde{w}_{t}+\tilde{w}_{x}+\tilde{w}_{x x x}+p(x) \tilde{w}_{x}(t, 0)=d(x) \tag{2}\\
\tilde{w}(t, 0)=\tilde{w}(t, L)=0, \hat{w}_{x}(t, L)=u(t) .
\end{array}\right.
$$

One proves the existence of a ISS Lyapunov functional U for (2). Then

$$
\frac{d}{d t} U(\tilde{w}) \leq-\lambda U(\tilde{w})+|u(t)|^{2}+\|d\|_{L^{2}}^{2} .
$$

We rewrite (1) as follows

$$
\left\{\begin{array}{l}
w_{t}+w_{x}+w_{x x x}+p(x) w_{x}(t, 0)-p(x) w_{x}(t, 0)=d(x) \\
w(t, 0)=w(t, L)=0 \\
w_{x}(t, L)=u(t)
\end{array}\right.
$$

Then, one has

$$
\frac{d}{d t} U(w) \leq-\lambda U(w)+|u(t)|^{2}+2\|p\|_{L^{2}}^{2}\left|w_{x}(t, 0)\right|^{2}+2\|d\|_{L^{2}}^{2}
$$

Recall that

$$
\frac{d}{d t} E(w) \leq E(w)-\left|w_{x}(t, 0)\right|^{2}+|u(t)|^{2}+\frac{1}{2}\|d\|_{L^{2}}^{2}
$$

then choosing $V(w):=E(w)+a U(w)$ with $a=\frac{1}{2\|p\|_{L^{2}}^{2}}$, one has

$$
\frac{d}{d t} V(w) \leq-\tilde{\lambda} U(w)+\tilde{\sigma}|u(t)|^{2}+\gamma\|d\|_{L^{2}}^{2}
$$

. Use the forwarding method [Mazenc \& Praly, 1996], based on a
linear operator $\mathcal{M}: L^{2}(0, L) \rightarrow \mathbb{R}$:

$$
W(w, z)=V(w)+b|z-\mathcal{M} w|^{2}
$$

II. Select the gains.

