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Motivation
The aim of this work is to use an integral action and an output feedback
control law to solve to the output regulation problem of a linear
Korteweg-de-Vries (KdV) system subject to a distributed disturbance.

Problem statement
Consider the Korteweg-de Vries equation

wt + wx + wxxx = d(x), (t, x) ∈ R+ × [0, L]

w(t, 0) = w(t, L) = 0, t ∈ R+

wx(t, L) = u(t), t ∈ R+

w(0, x) = w0(x), x ∈ [0, L],

(1)

u(t) ∈ R is a control d ∈ L2(0, L) is an unknown disturbance.

Question
Assume the output is y(t) := wx(t, 0). Is it possible to design an
output feedback law u(t) := f (wx(t, 0)) such that:

lim
t→+∞

|y(t)− r | = 0,

where r is a given reference, and despite the disturbance ?

A finite-dimensional example

ẇ(t) = u(t) + d ,

w(t) ∈ R, u is the control, d is a constant disturbance.
How can one design a feedback u(t) = f (w(t)) such that

lim
t→+∞

|w(t)− r | = 0, where r is a given reference ?

Obstruction
Static feedback-laws are not enough. Indeed, if
u(t) = −k(w(t)− r), then one has

|w(t)− r |2 ≤ |w(0)− r)|2e−(k−ε)t +
1− e−(k−ε)t

ε(k − ε)
d 2

with k > 0 and ε > 0 such that k − ε > 0. This mean that the
feedback u is not robust with respect to the disturbance d .

A simple solution known for a long time to this problem is to add an
integral term which also uses the information of the previous
disturbance and absorbs this disturbance.

The integral action principle
PI controller ẇ(t) = − kp(w(t)︸ ︷︷ ︸

proportional action

− kiz(t)︸ ︷︷ ︸
integral action

+d ,

ż(t) = w(t)− r

• The proportional action stabilizes w .

• The integral action modifies the equilibrium points.

Stability and Observability properties

Assuming that L /∈ N :=

{
2π
√

k2+kl+l2

3 |k, l ∈ N
}

, then, when u = 0

and d = 0 one has
1 the origin of (1) is globally exponentially stable [Rosier, 1997]
2 the output y(t) = wx(t, 0) is exactly observable [Rosier, 1997].

Main result
The open-loop is stable ⇒ no need of a proportional action.

wt + wx + wxxx = d(x), (t, x) ∈ R+,

w(t, 0) = w(t, L) = 0, t ∈ R+,

wx(t, L) = kz(t), t ∈ R+

ż(t) = y(t)− r , t ∈ R+

w(0, x) = w0(x), z(0) = z0, x ∈ [0, L].

Main result
Notation: w∞, z∞ are the equilibrium points.
D(A) := {z ,w ∈ R× L2(0, L) | w(0) = w(L) = 0, w ′(L) = z}.

Theorem
Let k ∈ (0, k?). Then, for any (d , r) ∈ L2(0, L)× R:

1. There exist ν,C > 0 such that, for all (z0,w0) ∈ R× L2(0, L), and
for all t ≥ 0

‖(z ,w)− (z∞,w∞)‖L2×R ≤ Ce−νt‖(z0,w0)− (z∞,w∞)‖L2×R
2. The output y is regulated towards the reference r . In other

words, for any (z0,w0) ∈ D(A)

lim
t→+∞

|wx(t, 0)− r | = 0.

for any strong solution.

Proof
I. Build a ISS-Lyapunov functional for the KdV equation.

When u = d = 0, we recall that E (w) := 1
2‖w‖

2
L2 satisfies:

d

dt
E (w) = −|wx(t, 0)|2 = −|y(t)|2.

Then, nonpositivity is ensured but the right hand side depends
only on the output.

⇒ It is a weak Lyapunov functional.
Following [Praly, 2019], we strictify E with an observer.

Strictification ?
Consists in modifying a weak Lyapunov functional to make it
strict ([Malisoff & Mazenc, 2009], [Prieur & Mazenc, 2012]).

Using the bacsktepping method based on the Fredholm transform, one
proves the existence of p ∈ L2(0, L) such that the observer ŵ{

ŵt + ŵx + ŵxxx + p(x)[y(t)− ŵx(t, 0)] = 0

ŵ(t, 0) = ŵ(t, L) = ŵx(t, L) = 0.

converge to w in the nominal condition. Consider w̃ := w − ŵ
which satisfies {

w̃t + w̃x + w̃xxx + p(x)w̃x(t, 0) = d(x)

w̃(t, 0) = w̃(t, L) = 0, ŵx(t, L) = u(t).
(2)

One proves the existence of a ISS Lyapunov functional U for (2). Then

d

dt
U(w̃) ≤ −λU(w̃) + |u(t)|2 + ‖d‖2

L2.

We rewrite (1) as follows
wt + wx + wxxx + p(x)wx(t, 0)− p(x)wx(t, 0) = d(x)

w(t, 0) = w(t, L) = 0,

wx(t, L) = u(t).

Then, one has

d

dt
U(w) ≤ −λU(w) + |u(t)|2 + 2‖p‖2

L2|wx(t, 0)|2 + 2‖d‖2
L2.

Recall that
d

dt
E (w) ≤ E (w)− |wx(t, 0)|2 + |u(t)|2 +

1

2
‖d‖2

L2,

then choosing V (w) := E (w) + aU(w) with a = 1
2‖p‖2

L2
, one has

d

dt
V (w) ≤ −λ̃U(w) + σ̃|u(t)|2 + γ‖d‖2

L2

II. Use the forwarding method [Mazenc & Praly, 1996], based on a
linear operatorM : L2(0, L)→ R:

W (w , z) = V (w) + b|z −Mw |2.
III. Select the gains.
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